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1. Introduction
With time, historical monuments may change and –

slightly – evolve: thanks to old paintings or photos, we
are able to appreciate it, and point at the differences. But
what about computers? This is not a trivial problem at all.
Indeed, two different pictures of the “same” building (e.g.
a modern photo and an impressionist painting of Notre-
Dame) may differ widely, as local textures or small archi-
tectural features are left subjects to the artist’s good will.

In this work we shall see how SIFT Features can be
used to detect occlusions, architectural deformations and
drawing-errors, the main tool being the “SIFT Flow” algo-
rithm proposed in [4].

We shall start in section 2 by giving a brief overview of
the SIFT Flow algorithm. Then, we will discuss the pos-
sibility of using other features than SIFT to compute the
optical flow, before describing in section 3 how the features
flow can be used to detect occlusions. Eventually, in sec-
tion 4, we will present a way to compute a quantitative eval-
uation of the distortion – “drawing errors” – for paintings
and drawings.

2. SIFT Flow Algorithm
Basis Algorithm Being given two very different pictures
of the same object (e.g. a monument), we would like to
find a dense correspondence map between them, identifying
regions in spite of variations in texture and appearance.

In order to reach this target, we first compute a dense
feature field on each image, which gives a local description
of every pixel’s neighborhood – SIFT features are used in
[4]. Using those features as a measure of similarity, we are
then able to compute a deformation flow w, the “Feature
flow”: each pixel p in the first image is identified to the
pixel p+wp of the second image. To compute a relevant w,
we minimize the following energy function:

E (w) =
∑
p

‖φ1 (p)− φ2 (p+ wp)‖1

+ γ.
∑
p

‖wp‖22

+ α.R (w, d)

(1)
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Figure 1. Error of the calculated field as a function of the distortion
for the SIFT and CNN features. The error is the mean square error
of the calculated deformation field. CNN3 corresponds to the 3rd
layer of the CNN feature and CNN7 to the 7th layer.

with φi(p) the feature extracted from the image i at the pixel
p, R a regularization function, and γ, α, d some real param-
eters.

The first term is there to enforce local similarity between
the deformed source image and the targeted one.

The second term prevents w from being too large. It is
related to the assumption that our two images are taken from
roughly similar viewpoints: pixels shouldn’t have to move
too far away to find their perfect match – providing the artist
is keeping the global structure of the picture intact.

The third term, the regularization term, is there to smooth
the deformation field. We chose to keep the same function
as [4] which correspond to a thresholded discrete gradient
of the deformation field:

R (w) =
∑

p,q∈N

min
(
|up − uq| , d

)
+min

(
|vp − vq| , d

)
, (2)

with N the set of neighboring pixels and u, v the compo-
nents of w.

We used the code given in [4] that implements efficient
belief propagation with some clever optimizations (see [2]
for more details); please note that apart from this, all the
code we used is ours.
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Figure 2. From top to bottom, left to right: Reference image,
Target image, Method 1 (constrained) result and Method 2 (free-
matching) result thresholded so that red corresponds to 10px dis-
placement. Notice that the “occlusions” detected on the upper part
of Notre-Dame correspond to actual architectural modifications.

Using CNN features A suitable path of improvement of
SIFT flow is the introduction of CNN features. For that pur-
pose, we use a “simple” neural network and choose one of
the layers as the feature’s map feeding the Flow algorithm.

In order to compare the efficiency of the different choices
of features, we take an image, distort it with a known defor-
mation v and measure the mean square error of the com-
puted field. Figure 1 shows the error curves as a function of
the distortion for the SIFT and CNN features.

The problem with choosing a layer as feature’s map is
that if we use a layer too deep, the size of the layer’s grid
will be too small and we will lose precision in the deforma-
tion field, which explains the bad performances in Figure 1
for small deformation, and if we use a shallower layer, the
results are not that good. A good way to do so would be to
extract a dense CNN features but a naive approach would
take too much time; we would therefore need some deep
optimization, which is the subject of [3].

3. Occlusions detection
The two strategies We now want to use SIFT flow to
detect occlusions in a target image (e.g. an old painting)
compared to a reference source image (e.g. a recent, clean
photo). Our main idea is that occlusions should lead to out-
liers in the deformation field, that will be detected simply.

The energy function (eqn. 1) can be written as follows:

E (w) = EFeat + γ.ENorm + α.EReg (d) . (3)

To detect occlusion, we developed two strategies. The
first one is to constrain the deformation field to be smooth

and small (γ ∼ 10−3), and detect occlusion by looking at
the first term: “Feature’s Energy”. The second strategy con-
sists in lightening the ENorm term (γ ∼ 10−6), so that parts
of the objects that are visible in the source image but oc-
cluded in the targeted one might be tempted to match other
areas of the picture: in order to minimize the prevailing
EFeat, pixels from a brick wall occluded by a tree will tend
to match brick regions elsewhere in the picture (which are
very likely to be found) instead of mis-matching with the
occluding foliage texture. We can then detect those move-
ments by looking at the “Norm’s Energy”.

Experimentally, the second strategy produces results that
are easier to use for detection purpose (see Figure 2). In-
deed, as the first strategy roughly consists in taking the SIFT
norm of the “difference” of the two images – the deforma-
tion flow correcting the small irregularities –, occlusions do
not lead to plain high energy zones, but to noisy, cloudy ar-
eas. After all, the occluding mask may happen to have the
same local aspect as the occluded area once every ten pixels.

Implementation First things first, we have to find param-
eters γ, α, d and P that lead to usable ENorm maps – P
is the patchsize of our SIFT descriptors. By hand (trying a
large range of values for every parameter), we chose P = 8,
α = 5.10−6, α = 2, d = 2 – some small tuning through
learning could have been done, but it wouldn’t have lead to
groundbreaking improvements as the most meaningful pa-
rameter in our case, P , is very constrained.

Without any treatment, sides and corners of our image
are freer to move than its center, as a rectangle image can
be “fold” without introducing any discontinuity. This be-
haviour makes little sense in the context of occlusion de-
tection, and, instead of modifying the SIFT flow algorithm,
we decided to solve this problem by using a framing trick:
adding the same 20px-large border frame to the source and
target image, we tend to fix the borders of the image, thus
imposing the same continuity constraint on every pixel.

Eventually, not entirely satisfied by the rough shape of
our occlusion regions (suplevel sets of ENorm), we decided
to combine it with an image segmentation algorithm based
on Mean Shift [1]. Results can be seen in Figure 3, and
would mainly benefit from a more efficient and entirely au-
tomatized segmentation technique.

4. Quantitative evaluation

We now want to get a quantitative evaluation of the de-
formation between the two images, which can be used to
measure the accuracy of the representation.

A first way to do so could be to measure the norm of the
deformation field. As we don’t want to include a shifting
part, we first remove the mean deformation to the deforma-
tion field and we don’t want either to consider some occlud-
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(a) Reference image (b) Occluded image (c) Norm Energy (d) Detected occlusions

Figure 3. Occlusion’s detection using the Norm Energy of SIFT Flow. (a) is the source image. (b) is the occluded target image. (c) is the
representation of the norm energy (red threshold corresponds to a 10px displacement), with P = 8, α = 5.10−6, α = 2, d = 2. (d) shows
the detected occlusion, obtained by thresholding (c) and applying some segmentation method.

ing objects we need first to remove the occluded part of the
deformation field.

We could also need a more local evaluation of the defor-
mation: we want to be able to detect local contraction and
extension of the deformation field. In order to get this in-
formation, we measure the gradient on a blurred field, to re-
duce the noise, and calculate a kind of divergence, as shown

(a) Referenced Image (b) Deformed Picture

(c) Deformation field (d) Deformation label

Figure 4. Painting deformation using SIFT Flow. (a) shows the
referenced image. (b) shows the deformed picture from (a). (c)
display the deformation field obtained with the SIFT Flow. (d)
shows the divergence of the gradient of the deformation (red cor-
responds to dilatation, blue to shrinking).

in Figure 4:

D(w) =
∂u

∂x
+
∂u

∂y
+
∂v

∂x
+
∂v

∂y
with w = (u, v) . (4)

We notice that the blur variance parameter corresponds to
the typical scale of the observed deformation.

5. Conclusion
We illustrated here the use of the feature flow algorithm

to solve a non-trivial problem, the comparison of pictures of
a similar scene with a huge variation in rendering style. De-
spite obtaining convincing result, we would like to mention
the work that is still to be done, especially in the dynamic
estimation of the scale and segmentation parameters.
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