# Discrete Optimal Transport: Scaling up to 1,000,000 samples in 1s

Jean Feydy Cortona, Tuscany – June 2019

Écoles Normales Supérieures de Paris et Paris-Saclay Collaboration with B. Charlier, J. Claunès (KeOps library); F.-X. Vialard, G. Peyré, T. Séjourné, A. Trouvé (OT theory).

Source A, target B,



Source **A**, target **B**, mapping  $\varphi$ 



Source **A**, target **B**, mapping  $\varphi$ 



Source A, target B, mapping  $\varphi$ 





### On labeled shapes, use a spring energy



Anatomical landmarks from A morphometric approach for the analysis of body shape in bluefin tuna, Addis et al., 2009.

### On labeled shapes, use a spring energy



Anatomical landmarks from A morphometric approach for the analysis of body shape in bluefin tuna, Addis et al., 2009.

### Encoding unlabeled shapes as measures

Let's enforce sampling invariance:

$$A \longrightarrow \alpha = \sum_{i=1}^{N} \alpha_i \delta_{\mathbf{x}_i}, \qquad B \longrightarrow \beta = \sum_{j=1}^{M} \beta_j \delta_{\mathbf{y}_j}.$$

Let's enforce sampling invariance:

$$\mathsf{A} \ \longrightarrow \ \alpha \ = \ \sum_{i=1}^{\mathsf{N}} \alpha_i \delta_{\mathsf{x}_i} \,, \qquad \mathsf{B} \ \longrightarrow \ \beta \ = \ \sum_{j=1}^{\mathsf{M}} \beta_j \delta_{y_j} \,.$$



Let's enforce sampling invariance:

$$\mathsf{A} \ \longrightarrow \ \alpha \ = \ \sum_{i=1}^{\mathsf{N}} \alpha_i \delta_{\mathsf{x}_i} \,, \qquad \mathsf{B} \ \longrightarrow \ \beta \ = \ \sum_{j=1}^{\mathsf{M}} \beta_j \delta_{\mathsf{y}_j} \,.$$







$$\alpha = \sum_{i=1}^{N} \alpha_i \delta_{\mathbf{x}_i}, \quad \beta = \sum_{j=1}^{M} \beta_j \delta_{\mathbf{y}_j}.$$



$$\alpha = \sum_{i=1}^{N} \alpha_i \delta_{x_i}, \quad \beta = \sum_{j=1}^{M} \beta_j \delta_{y_j}.$$
$$\sum_{i=1}^{N} \alpha_i = 1 = \sum_{j=1}^{M} \beta_j$$

(



$$\alpha = \sum_{i=1}^{N} \alpha_i \delta_{\mathbf{x}_i}, \quad \beta = \sum_{j=1}^{M} \beta_j \delta_{\mathbf{y}_j}.$$
$$\sum_{i=1}^{N} \alpha_i = 1 = \sum_{j=1}^{M} \beta_j$$

Display  $v = -\nabla_{\mathbf{x}_i} \text{Loss}(\boldsymbol{\alpha}, \boldsymbol{\beta}).$ 



$$\alpha = \sum_{i=1}^{N} \alpha_i \delta_{\mathbf{x}_i}, \quad \beta = \sum_{j=1}^{M} \beta_j \delta_{\mathbf{y}_j}.$$
$$\sum_{i=1}^{N} \alpha_i = 1 = \sum_{j=1}^{M} \beta_j$$
Display  $v = -\nabla_{\mathbf{x}_i} \text{Loss}(\alpha, \beta).$ 

Seamless extensions to:

- $\sum_{i} \alpha_{i} \neq \sum_{j} \beta_{j}$ , outliers [Chizat et al., 2018],
- curves and surfaces [Kaltenmark et al., 2017],
- variable weights  $\alpha_i$ .





$$t = .25$$



$$t = .50$$



$$t = 1.00$$



$$t = 5.00$$



The Wasserstein distance is a convenient baseline... But will it scale to 3D meshes?

## Introducing the Optimal Transport problem



Minimize over N-by-M matrices (transport plans)  $\pi$ :

$$OT(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \min_{\pi} \underbrace{\sum_{i,j} \pi_{i,j} \cdot \frac{1}{2} |\mathbf{x}_i - \mathbf{y}_j|^2}_{\text{transport cost}}$$



subject to  $\pi_{i,j} \ge 0$ ,  $\sum_{j} \pi_{i,j} = \alpha_{i}, \sum_{i} \pi_{i,j} = \beta_{j}.$ 

$$OT(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \min_{\boldsymbol{\pi}} \langle \boldsymbol{\pi}, \boldsymbol{C} \rangle, \text{ with } C(\mathbf{x}_i, y_j) = \frac{1}{p} ||\mathbf{x}_i - y_j||^p \longrightarrow \text{Assignment}$$
  
s.t.  $\boldsymbol{\pi} \ge 0, \quad \boldsymbol{\pi} \mathbf{1} = \boldsymbol{\alpha}, \quad \boldsymbol{\pi}^{\mathsf{T}} \mathbf{1} = \boldsymbol{\beta}$ 

$$OT(\alpha, \beta) = \min_{\pi} \langle \pi, C \rangle, \text{ with } C(\mathbf{x}_i, y_j) = \frac{1}{p} ||\mathbf{x}_i - y_j||^p \longrightarrow \text{Assignment}$$
  
s.t.  $\pi \ge 0, \quad \pi \mathbf{1} = \alpha, \quad \pi^{\mathsf{T}} \mathbf{1} = \beta$ 



 $\sum_{i,j} \pi_{i,j} C(\mathbf{x}_i, \mathbf{y}_j)$ 



$$OT(\alpha, \beta) = \min_{\pi} \langle \pi, C \rangle, \text{ with } C(\mathbf{x}_i, y_j) = \frac{1}{p} ||\mathbf{x}_i - y_j||^p \longrightarrow \text{Assignment}$$
  
s.t.  $\pi \ge 0, \quad \pi \mathbf{1} = \alpha, \quad \pi^{\mathsf{T}} \mathbf{1} = \beta$ 



$$OT(\alpha, \beta) = \min_{\pi} \langle \pi, C \rangle, \text{ with } C(\mathbf{x}_i, y_j) = \frac{1}{p} ||\mathbf{x}_i - y_j||^p \longrightarrow \text{Assignment}$$
  
s.t.  $\pi \ge 0, \quad \pi \mathbf{1} = \alpha, \quad \pi^{\mathsf{T}} \mathbf{1} = \beta$ 



```
\sum_{i,j} \pi_{i,j} \operatorname{C}(\mathbf{x}_i, \mathbf{y}_j)
```





$$OT(\alpha, \beta) = \min_{\pi} \langle \pi, C \rangle, \text{ with } C(\mathbf{x}_i, y_j) = \frac{1}{p} ||\mathbf{x}_i - y_j||^p \longrightarrow \text{Assignment}$$
  
s.t.  $\pi \ge 0, \quad \pi \mathbf{1} = \alpha, \quad \pi^{\mathsf{T}} \mathbf{1} = \beta$ 



 $\sum_{i,j} \pi_{i,j} \operatorname{C}(\mathbf{x}_i, \mathbf{y}_j)$ 





$$OT(\alpha, \beta) = \min_{\pi} \langle \pi, C \rangle, \text{ with } C(\mathbf{x}_i, y_j) = \frac{1}{p} ||\mathbf{x}_i - y_j||^p \longrightarrow \text{Assignment}$$
  
s.t.  $\pi \ge 0, \quad \pi \mathbf{1} = \alpha, \quad \pi^{\mathsf{T}} \mathbf{1} = \beta$ 



 $\sum_{i,j} \pi_{i,j} C(\mathbf{x}_i, \mathbf{y}_j)$ 





$$OT(\alpha, \beta) = \min_{\pi} \langle \pi, C \rangle, \text{ with } C(\mathbf{x}_i, y_j) = \frac{1}{p} ||\mathbf{x}_i - y_j||^p \longrightarrow \text{Assignment}$$
  
s.t.  $\pi \ge 0, \quad \pi \mathbf{1} = \alpha, \quad \pi^{\mathsf{T}} \mathbf{1} = \beta$ 



$$\begin{array}{ll} \max_{f,g} & \langle \alpha, f \rangle + \langle \beta, g \rangle & \longrightarrow \mathsf{FedEx} \\ \text{s.t.} & f(\mathsf{x}_i) + g(y_j) \leqslant \mathsf{C}(\mathsf{x}_i, y_j), \end{array}$$

$$OT(\alpha, \beta) = \min_{\pi} \langle \pi, C \rangle, \text{ with } C(\mathbf{x}_i, \mathbf{y}_j) = \frac{1}{p} ||\mathbf{x}_i - \mathbf{y}_j||^p \longrightarrow \text{Assignment}$$
  
s.t.  $\pi \ge 0, \quad \pi \mathbf{1} = \alpha, \quad \pi^{\mathsf{T}} \mathbf{1} = \beta$ 



$$= \max_{\substack{f,g \\ \text{s.t.}}} \langle \alpha, f \rangle + \langle \beta, g \rangle \longrightarrow \mathsf{FedEx}$$
  
s.t.  $f(x_i) + g(y_j) \leqslant \mathsf{C}(x_i, y_j),$ 

 $\alpha$ ,  $\beta \ge 0$ , separable constraint  $f(x_i) + g(y_j) \le C(x_i, y_j)$ : Couldn't we maximize the prices f and g alternatively?

 $\alpha$ ,  $\beta \ge 0$ , separable constraint  $f(x_i) + g(y_j) \le C(x_i, y_j)$ : Couldn't we maximize the prices f and g alternatively?

 $f_i \leftarrow \mathbf{O}_{\mathbb{R}^N}$ ;  $g_j \leftarrow \mathbf{O}_{\mathbb{R}^M}$ 

 $\alpha$ ,  $\beta \ge 0$ , separable constraint  $f(x_i) + g(y_j) \le C(x_i, y_j)$ : Couldn't we maximize the prices f and g alternatively?

$$f_i \leftarrow \mathbf{O}_{\mathbb{R}^{\mathsf{N}}}$$
;  $g_j \leftarrow \mathbf{O}_{\mathbb{R}^{\mathsf{M}}}$ 

Until convergence:
**Combinatorial**, on the simplex  $\implies$  Hungarian method in  $O(N^3)$ .

 $\alpha$ ,  $\beta \ge 0$ , separable constraint  $f(x_i) + g(y_j) \le C(x_i, y_j)$ : Couldn't we maximize the prices f and g alternatively?

 $f_i \leftarrow \mathsf{O}_{\mathbb{R}^{\mathsf{N}}}$  ;  $g_j \leftarrow \mathsf{O}_{\mathbb{R}^{\mathsf{M}}}$ 

Until convergence:

 $f_i = f(\mathbf{x}_i) \leftarrow \min_{\mathbf{y}_j \in \mathrm{Supp}(\beta)} \big[ C(\mathbf{x}_i, \mathbf{y}_j) - g(\mathbf{y}_j) \big]$ 

**Combinatorial**, on the simplex  $\implies$  Hungarian method in  $O(N^3)$ .

 $\alpha$ ,  $\beta \ge 0$ , separable constraint  $f(x_i) + g(y_j) \le C(x_i, y_j)$ : Couldn't we maximize the prices f and g alternatively?

 $f_i \leftarrow \mathbf{O}_{\mathbb{R}^N}$ ;  $g_j \leftarrow \mathbf{O}_{\mathbb{R}^M}$ 

Until convergence:

 $f_i = f(x_i) \leftarrow \min_{y_j \in \text{Supp}(\beta)} \left[ C(x_i, y_j) - g(y_j) \right]$  $g_j = g(y_j) \leftarrow \min_{x_i \in \text{Supp}(\alpha)} \left[ C(x_i, y_j) - f(x_i) \right]$  **Combinatorial**, on the simplex  $\implies$  Hungarian method in  $O(N^3)$ .

 $\alpha$ ,  $\beta \ge 0$ , separable constraint  $f(x_i) + g(y_j) \le C(x_i, y_j)$ : Couldn't we maximize the prices f and g alternatively?

 $f_i \leftarrow \mathbf{0}_{\mathbb{R}^{\mathsf{N}}}$ ;  $g_j \leftarrow \mathbf{0}_{\mathbb{R}^{\mathsf{M}}}$ 

Until convergence:

 $f_i = f(x_i) \leftarrow \min_{y_j \in \text{Supp}(\beta)} \left[ C(x_i, y_j) - g(y_j) \right]$  $g_j = g(y_j) \leftarrow \min_{x_i \in \text{Supp}(\alpha)} \left[ C(x_i, y_j) - f(x_i) \right]$ 

 $\implies$  Too greedy! We get stuck after two iterations.

Auction algorithm (Dimitri Bertsekas, 1980's):

 $f_i \leftarrow \mathbf{O}_{\mathbb{R}^{\mathsf{N}}}; \quad g_j \leftarrow \mathbf{O}_{\mathbb{R}^{\mathsf{M}}}$ 

Until convergence:

 $\begin{aligned} f_i &= f(\mathbf{x}_i) \leftarrow \min_{y_j \in \text{Supp}(\beta)} \left[ C(\mathbf{x}_i, y_j) - g(y_j) \right] \\ g_j &= g(y_j) \leftarrow \min_{\mathbf{x}_i \in \text{Supp}(\alpha)} \left[ C(\mathbf{x}_i, y_j) - f(\mathbf{x}_i) \right] \ "- \varepsilon" \end{aligned}$ 

Auction algorithm (Dimitri Bertsekas, 1980's):

 $f_i \leftarrow \mathbf{O}_{\mathbb{R}^N}$ ;  $g_j \leftarrow \mathbf{O}_{\mathbb{R}^M}$ 

Until convergence:

$$\begin{aligned} f_i &= f(\mathbf{x}_i) \ \leftarrow \ \min_{\mathbf{y}_j \in \mathrm{Supp}(\beta)} \big[ \, \mathrm{C}(\mathbf{x}_i, \mathbf{y}_j) - g(\mathbf{y}_j) \, \big] \\ g_j &= g(\mathbf{y}_j) \ \leftarrow \ \min_{\mathbf{x}_i \in \mathrm{Supp}(\alpha)} \big[ \, \mathrm{C}(\mathbf{x}_i, \mathbf{y}_j) - f(\mathbf{x}_i) \, \big] \ ``- \ \varepsilon `` \end{aligned}$$

 $\implies \varepsilon$ -optimal solutions in  $O(N^2 \cdot \max_{\alpha \otimes \beta} C / \varepsilon)$ .

Auction algorithm (Dimitri Bertsekas, 1980's):

 $f_i \leftarrow \mathbf{O}_{\mathbb{R}^N}$ ;  $g_j \leftarrow \mathbf{O}_{\mathbb{R}^M}$ 

Until convergence:

$$\begin{aligned} f_i &= f(\mathbf{x}_i) \ \leftarrow \ \min_{\mathbf{y}_j \in \mathrm{Supp}(\beta)} \left[ \, \mathrm{C}(\mathbf{x}_i, \mathbf{y}_j) - g(\mathbf{y}_j) \, \right] \\ g_j &= g(\mathbf{y}_j) \ \leftarrow \ \min_{\mathbf{x}_i \in \mathrm{Supp}(\alpha)} \left[ \, \mathrm{C}(\mathbf{x}_i, \mathbf{y}_j) - f(\mathbf{x}_i) \, \right] \ ``- \ \varepsilon `` \end{aligned}$$

 $\implies \varepsilon \text{-optimal solutions in } O(N^2 \cdot \max_{\alpha \otimes \beta} C \ / \ \varepsilon).$ 

- $\implies$  What about our **weights**  $\alpha$  and  $\beta$ ?
- $\Longrightarrow$  Can we symmetrize all this?

# The SoftMin interpolates between a minimum and a sum

$$\log(e^{c} + e^{d}) = \max(c, d) + \log\left(\underbrace{e^{c-\max(c,d)} + e^{d-\max(c,d)}}_{\in [1,2]}\right)$$

#### The SoftMin interpolates between a minimum and a sum

$$\log(e^{c} + e^{d}) = \max(c, d) + \log\left(\underbrace{e^{c-\max(c,d)} + e^{d-\max(c,d)}}_{\in [1,2]}\right)$$

Building on this, for a **regularization** parameter  $\varepsilon > 0$ , we define

$$\min_{\varepsilon, y \sim \beta} \varphi(\mathbf{x}, y) = -\varepsilon \log \sum_{j=1}^{M} \beta_j \exp \left[ -\frac{1}{\varepsilon} \varphi(\mathbf{x}, y_j) \right]$$

#### The SoftMin interpolates between a minimum and a sum

$$\log(e^{c} + e^{d}) = \max(c, d) + \log(\underbrace{e^{c - \max(c, d)} + e^{d - \max(c, d)}}_{\in [1, 2]})$$

Building on this, for a **regularization** parameter  $\varepsilon > 0$ , we define

$$\min_{\varepsilon, y \sim \beta} \varphi(\mathbf{x}, y) = -\varepsilon \log \sum_{j=1}^{M} \beta_j \exp \left[ -\frac{1}{\varepsilon} \varphi(\mathbf{x}, y_j) \right]$$

The IPFP–SoftAssign–Sinkhorn algorithm:

$$\mathbf{f}_{i} \leftarrow \mathbf{0}_{\mathbb{R}^{\mathsf{N}}}$$
 ;  $\mathbf{g}_{j} \leftarrow \mathbf{0}_{\mathbb{R}^{\mathsf{M}}}$ 

Until convergence:

$$\begin{aligned} f_i &= f(\mathbf{x}_i) \ \leftarrow \ \min_{\varepsilon, \ \mathbf{y} \sim \beta} \left[ \ \mathsf{C}(\mathbf{x}_i, y_j) - g(y_j) \right] \\ g_j &= g(y_j) \ \leftarrow \ \min_{\varepsilon, \ \mathbf{x} \sim \alpha} \left[ \ \mathsf{C}(\mathbf{x}_i, y_j) - f(\mathbf{x}_i) \right] \end{aligned}$$

$$\log(e^{c} + e^{d}) = \max(c, d) + \log(\underbrace{e^{c - \max(c, d)} + e^{d - \max(c, d)}}_{\in [1, 2]})$$

Building on this, for a **regularization** parameter  $\varepsilon > 0$ , we define

$$\min_{\varepsilon, y \sim \beta} \varphi(\mathbf{x}, y) = -\varepsilon \log \sum_{j=1}^{M} \beta_j \exp \left[ -\frac{1}{\varepsilon} \varphi(\mathbf{x}, y_j) \right]$$

The IPFP–SoftAssign–Sinkhorn algorithm:

$$\mathbf{f}_{i} \leftarrow \mathbf{0}_{\mathbb{R}^{\mathsf{N}}}$$
 ;  $\mathbf{g}_{j} \leftarrow \mathbf{0}_{\mathbb{R}^{\mathsf{M}}}$ 

Until convergence:

$$\begin{aligned} f_i &= f(\mathbf{x}_i) \ \leftarrow \ \min_{\varepsilon, \ \mathbf{y} \sim \beta} \left[ \ \mathsf{C}(\mathbf{x}_i, \mathbf{y}_j) - g(\mathbf{y}_j) \right] \\ g_j &= g(\mathbf{y}_j) \ \leftarrow \ \min_{\varepsilon, \ \mathbf{x} \sim \alpha} \left[ \ \mathsf{C}(\mathbf{x}_i, \mathbf{y}_j) - f(\mathbf{x}_i) \right] \end{aligned}$$

 $\implies$  This **simple** algorithm works well!

## Entropic regularization: introducing Schrödinger's problem



For 
$$\varepsilon > 0$$
:  
 $DT_{\varepsilon}(\alpha, \beta) = \min_{\pi} \underbrace{\sum_{i,j} \pi_{i,j} \cdot \frac{1}{2} |\mathbf{x}_i - \mathbf{y}_j|^2}_{\text{transport cost}}$ 





subject to

$$\sum_{j} \pi_{i,j} = \alpha_{i}, \quad \sum_{i} \pi_{i,j} = \beta_{j}.$$

$$OT_{\varepsilon}(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \min_{\pi} \langle \pi, \mathsf{C} \rangle + \varepsilon \operatorname{KL}(\pi, \boldsymbol{\alpha} \otimes \boldsymbol{\beta}) \longrightarrow \operatorname{Fuzzy assignment}$$
  
s.t.  $\pi \mathbf{1} = \boldsymbol{\alpha}, \qquad \pi^{\mathsf{T}} \mathbf{1} = \boldsymbol{\beta}$ 

 $\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \min_{\pi} \langle \pi,\mathsf{C} \rangle + \varepsilon \,\mathsf{KL}(\pi,\alpha\otimes\beta) &\longrightarrow \mathsf{Fuzzy} \text{ assignment} \\ \text{s.t.} & \pi \,\mathbf{1} = \alpha, \qquad \pi^\mathsf{T} \,\mathbf{1} = \beta \\ &= \max_{f,g} \langle \alpha,f \rangle + \langle \beta,g \rangle &\longrightarrow \mathsf{Cheeky} \,\mathsf{FedEx} \\ &\quad -\underbrace{\varepsilon \langle \alpha\otimes\beta, e^{(f\oplus g-\mathsf{C})/\varepsilon} - 1 \rangle}_{\text{soft constraint } f\oplus g \leqslant \mathsf{C}} \end{aligned}$ 

 $\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \min_{\pi} \langle \pi,\mathsf{C} \rangle + \varepsilon \,\mathsf{KL}(\pi,\alpha\otimes\beta) &\longrightarrow \mathsf{Fuzzy} \text{ assignment} \\ \text{s.t.} & \pi \,\mathbf{1} = \alpha, \qquad \pi^\mathsf{T} \,\mathbf{1} = \beta \\ &= \max_{f,g} \langle \alpha,f \rangle + \langle \beta,g \rangle &\longrightarrow \mathsf{Cheeky} \,\mathsf{FedEx} \\ &\quad -\underbrace{\varepsilon \langle \alpha\otimes\beta, e^{(f\oplus g-\mathsf{C})/\varepsilon} - 1 \rangle}_{\mathsf{soft} \,\mathsf{constraint} \, f\oplus g \leqslant \mathsf{C}} \end{aligned}$ 

At the optimum,  $\pi = e^{(f \oplus g - C)/\varepsilon} \cdot \alpha \otimes \beta$ i.e.  $\pi_{i,j} = \alpha_i e^{f_i/\varepsilon} e^{-C(\mathbf{x}_i, \mathbf{y}_j)/\varepsilon} e^{g_j/\varepsilon} \beta_j$ .

# Sinkhorn algorithm = coordinate ascent on the dual problem

$$OT_{\varepsilon}(\alpha,\beta) = \max_{f,g} \langle \alpha, f \rangle + \langle \beta, g \rangle \longrightarrow Cheeky \ FedEx$$
$$-\underbrace{\varepsilon \langle \alpha \otimes \beta, e^{(f \oplus g - C)/\varepsilon} - 1 \rangle}_{\text{soft constraint } f \oplus g \leq C}$$

### Sinkhorn algorithm = coordinate ascent on the dual problem

$$OT_{\varepsilon}(\alpha,\beta) = \max_{f,g} \langle \alpha, f \rangle + \langle \beta, g \rangle \longrightarrow Cheeky \ FedEx$$
$$-\underbrace{\varepsilon \langle \alpha \otimes \beta, e^{(f \oplus g - C)/\varepsilon} - 1 \rangle}_{\text{soft constraint } f \oplus g \leqslant C}$$

Equivalent to the constraints on  $\pi$ , the optimality conditions read:

$$f(\mathbf{x}) = \min_{\mathbf{y} \sim \beta} \left[ C(\mathbf{x}, \mathbf{y}) - g(\mathbf{y}) \right],$$
$$g(\mathbf{y}) = \min_{\mathbf{x} \sim \alpha} \left[ C(\mathbf{x}, \mathbf{y}) - f(\mathbf{x}) \right].$$

### Sinkhorn algorithm = coordinate ascent on the dual problem

$$OT_{\varepsilon}(\alpha,\beta) = \max_{f,g} \langle \alpha, f \rangle + \langle \beta, g \rangle \longrightarrow Cheeky \ FedEx$$
$$-\underbrace{\varepsilon \langle \alpha \otimes \beta, e^{(f \oplus g - C)/\varepsilon} - 1 \rangle}_{\text{soft constraint } f \oplus g \leqslant C}$$

Equivalent to the constraints on  $\pi$ , the optimality conditions read:

$$f(\mathbf{x}) = \min_{\mathbf{y} \sim \beta} \left[ C(\mathbf{x}, \mathbf{y}) - g(\mathbf{y}) \right],$$
$$g(\mathbf{y}) = \min_{\mathbf{x} \sim \alpha} \left[ C(\mathbf{x}, \mathbf{y}) - f(\mathbf{x}) \right].$$

$$OT_{\varepsilon}(\alpha,\beta) = \max_{f,g} \langle \alpha, f \rangle + \langle \beta, g \rangle \longrightarrow Cheeky \ FedEx$$
$$-\underbrace{\varepsilon \langle \alpha \otimes \beta, e^{(f \oplus g - C)/\varepsilon} - 1 \rangle}_{\text{soft constraint } f \oplus g \leqslant C}$$

Equivalent to the constraints on  $\pi$ , the optimality conditions read:

$$f(x) = \min_{y \sim \beta} \left[ C(x,y) - g(y) \right],$$
$$g(y) = \min_{x \sim \alpha} \left[ C(x,y) - f(x) \right].$$

 $\implies$  Let's enforce them alternatively!

#### Re-inventing the wheel, every twenty years or so



TPS-RPM algorithm, Chui and Rangarajan, CVPR **2000**  Optimal Transport for diffeomorphic registration, Feydy et al., MICCAI **2017** 

#### Re-inventing the wheel, every twenty years or so



TPS-RPM algorithm, Chui and Rangarajan, CVPR **2000**  Optimal Transport for diffeomorphic registration, Feydy et al., MICCAI **2017** 

 $\implies$  We've added weights, orientations, convergence analysis... But shouldn't we go a bit **further**? It's 2019 now: What's new?

## Registrating circles, $C(x, y) = ||x - y||^2$ , $\sqrt{\varepsilon} = 0.1$ :



## Registrating circles, $C(x, y) = ||x - y||^2$ , $\sqrt{\varepsilon} = 0.1$ :



## Registrating circles, $C(x, y) = ||x - y||^2$ , $\sqrt{\varepsilon} = 0.1$ :



## Registrating circles, $C(x, y) = ||x - y||^2$ , $\sqrt{\varepsilon} = 0.2$ :



## Registrating circles, $C(x, y) = ||x - y||^2$ , $\sqrt{\varepsilon} = 0.2$ :



## Registrating circles, $C(x, y) = ||x - y||^2$ , $\sqrt{\varepsilon} = 0.2$ :



## Registrating circles, $C(x, y) = ||x - y||^2$ , $\sqrt{\varepsilon} = 0.2$ :



**Bad news:** for  $0 < \varepsilon \leq +\infty$ , we converge towards  $\alpha$  such that

 $\mathsf{OT}_{\varepsilon}(\boldsymbol{\alpha}, \boldsymbol{\beta}) < \mathsf{OT}_{\varepsilon}(\boldsymbol{\beta}, \boldsymbol{\beta}).$ 

### Standard solution: use an annealing scheme in the descent



TPS-RPM algorithm, Chui and Rangarajan, CVPR 2000

### Standard solution: use an annealing scheme in the descent



TPS-RPM algorithm, Chui and Rangarajan, CVPR 2000

⇒ Cumbersome and brittle workaround, with parameters to tune.  $OT_{\varepsilon}(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \min_{\boldsymbol{\pi}} \langle \boldsymbol{\pi}, \boldsymbol{C} \rangle + \varepsilon \operatorname{KL}(\boldsymbol{\pi}, \boldsymbol{\alpha} \otimes \boldsymbol{\beta}) \longrightarrow \operatorname{Fuzzy assignment}$ s.t.  $\boldsymbol{\pi} \mathbf{1} = \boldsymbol{\alpha}, \qquad \boldsymbol{\pi}^{\mathsf{T}} \mathbf{1} = \boldsymbol{\beta}$   $\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \min_{\pi} \langle \pi,\mathsf{C} \rangle + \varepsilon \,\mathsf{KL}(\pi,\alpha\otimes\beta) &\longrightarrow \mathsf{Fuzzy} \text{ assignment} \\ \text{s.t.} \quad \pi \,\mathbf{1} &= \alpha, \qquad \pi^{\mathsf{T}}\mathbf{1} &= \beta \\ \\ \mathsf{OT}_{\varepsilon}(\alpha,\beta) & \xrightarrow{\varepsilon \to +\infty} & \langle \alpha\otimes\beta,\mathsf{C} \rangle &= \langle \alpha,\mathsf{C}\star\beta \rangle \end{aligned}$ 

 $\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \min_{\pi} \langle \pi,\mathsf{C} \rangle + \varepsilon \,\mathsf{KL}(\pi,\alpha\otimes\beta) &\longrightarrow \mathsf{Fuzzy} \text{ assignment} \\ \text{s.t.} \quad \pi \,\mathbf{1} \,=\, \alpha, \qquad \pi^\mathsf{T} \,\mathbf{1} \,=\, \beta \end{aligned}$ 

 $\mathsf{OT}_{\varepsilon}(\alpha,\beta) \qquad \xrightarrow{\varepsilon \to +\infty} \qquad \langle \alpha \otimes \beta \,,\, \mathsf{C} \,\rangle \ = \ \langle \alpha \,,\, \mathsf{C} \,\star\, \beta \,\rangle$ 

Define the Sinkhorn divergence [Ramdas et al., 2017]:

$$\mathsf{S}_{\varepsilon}(\alpha,\beta) = \mathsf{OT}_{\varepsilon}(\alpha,\beta) - \frac{1}{2}\mathsf{OT}_{\varepsilon}(\alpha,\alpha) - \frac{1}{2}\mathsf{OT}_{\varepsilon}(\beta,\beta)$$

$$\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \min_{\pi} \langle \pi,\mathsf{C} \rangle + \varepsilon \,\mathsf{KL}(\pi,\alpha\otimes\beta) &\longrightarrow \mathsf{Fuzzy} \text{ assignment} \\ \text{s.t.} \quad \pi \,\mathbf{1} \,=\, \alpha, \qquad \pi^{\mathsf{T}}\mathbf{1} \,=\, \beta \end{aligned}$$

$$\mathsf{OT}_{\varepsilon}(\alpha,\beta) \qquad \xrightarrow{\varepsilon \to +\infty} \qquad \langle \alpha \otimes \beta \,,\, \mathsf{C} \,\rangle \ = \ \langle \alpha \,,\, \mathsf{C} \,\star\, \beta \,\rangle$$

Define the Sinkhorn divergence [Ramdas et al., 2017]:

$$S_{\varepsilon}(\alpha,\beta) = OT_{\varepsilon}(\alpha,\beta) - \frac{1}{2}OT_{\varepsilon}(\alpha,\alpha) - \frac{1}{2}OT_{\varepsilon}(\beta,\beta)$$

 $\mathsf{Wasserstein}_{+\mathsf{C}}(\alpha,\beta) \xleftarrow{\varepsilon \to 0} \mathsf{S}_{\varepsilon}(\alpha,\beta) \xrightarrow{\varepsilon \to +\infty} \frac{1}{2} \langle \alpha - \beta, -\mathsf{C} \star (\alpha - \beta) \rangle$ 

$$\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \min_{\pi} \langle \pi,\mathsf{C} \rangle + \varepsilon \,\mathsf{KL}(\pi,\alpha\otimes\beta) &\longrightarrow \mathsf{Fuzzy} \text{ assignment} \\ \text{s.t.} \quad \pi \,\mathbf{1} \,=\, \alpha, \qquad \pi^{\mathsf{T}}\mathbf{1} \,=\, \beta \end{aligned}$$

$$\mathsf{OT}_{\varepsilon}(\alpha,\beta) \qquad \xrightarrow{\varepsilon \to +\infty} \qquad \langle \alpha \otimes \beta \,,\, \mathsf{C} \,\rangle \ = \ \langle \alpha \,,\, \mathsf{C} \,\star\, \beta \,\rangle$$

Define the Sinkhorn divergence [Ramdas et al., 2017]:

$$S_{\varepsilon}(\alpha,\beta) = OT_{\varepsilon}(\alpha,\beta) - \frac{1}{2}OT_{\varepsilon}(\alpha,\alpha) - \frac{1}{2}OT_{\varepsilon}(\beta,\beta)$$

 $\mathsf{Wasserstein}_{+\mathsf{C}}(\alpha,\beta) \xleftarrow{\varepsilon \to 0} \mathsf{S}_{\varepsilon}(\alpha,\beta) \xrightarrow{\varepsilon \to +\infty} \frac{1}{2} \langle \alpha - \beta, -\mathsf{C} \star (\alpha - \beta) \rangle$ 

In practice,  $S_{\varepsilon}$  is "good enough" for ML applications [Genevay et al., 2018, Salimans et al., 2018, Sanjabi et al., 2018].

#### In our papers: theoretical guarantees

Theorem (F., Séjourné, Vialard, Amari, Trouvé, Peyré; 2018) For all probability measures *α*, *β* and regularization  $\varepsilon > 0$ :
Theorem (F., Séjourné, Vialard, Amari, Trouvé, Peyré; 2018) For all probability measures *α*, *β* and regularization  $\varepsilon > 0$ :

 $0 \leqslant S_{arepsilon}(oldsymbol{lpha},eta)$  with equality iff.  $oldsymbol{lpha}=eta$ 

Theorem (F., Séjourné, Vialard, Amari, Trouvé, Peyré; 2018) For all probability measures *α*, *β* and regularization  $\varepsilon > 0$ :

 $0 \leqslant S_{arepsilon}(oldsymbol{lpha},eta)$  with equality iff.  $oldsymbol{lpha}=eta$ 

 $lpha\mapsto \mathsf{S}_arepsilon(lpha,eta)$  is convex and differentiable

Theorem (F., Séjourné, Vialard, Amari, Trouvé, Peyré; 2018) For all probability measures *α*, *β* and regularization  $\varepsilon > 0$ :

 $0 \leqslant S_{\varepsilon}(\alpha, \beta)$  with equality iff.  $\alpha = \beta$ 

 $lpha\mapsto \mathsf{S}_arepsilon(lpha,eta)$  is convex and differentiable

These results can be generalized to **unbalanced OT** and arbitrary **feature** spaces – e.g. (position, orientation)  $\simeq \mathbb{R}^3 \times \mathbb{S}^2$ .

Theorem (F., Séjourné, Vialard, Amari, Trouvé, Peyré; 2018) For all probability measures *α*, *β* and regularization  $\varepsilon > 0$ :

 $0 \leqslant S_{\varepsilon}(\alpha, \beta)$  with equality iff.  $\alpha = \beta$ 

 $lpha\mapsto \mathsf{S}_arepsilon(lpha,eta)$  is convex and differentiable

These results can be generalized to **unbalanced OT** and arbitrary **feature** spaces – e.g. (position, orientation)  $\simeq \mathbb{R}^3 \times \mathbb{S}^2$ .



The optimality conditions read:

$$f(x) = \min_{\substack{y \sim \beta}} \left[ C(x, y) - g(y) \right],$$
  
$$g(y) = \min_{\substack{x \sim \alpha}} \left[ C(x, y) - f(x) \right].$$

The optimality conditions read:

$$f(x) = \min_{\substack{y \sim \beta}} \left[ C(x,y) - g(y) \right],$$
  
$$g(y) = \min_{\substack{x \sim \alpha}} \left[ C(x,y) - f(x) \right].$$

Final cost:

 $\mathsf{OT}_{\varepsilon}(\alpha,\beta) \;=\; \langle \, \alpha \,, \, f \rangle \;+\; \langle \, \beta \,, \, g \, \rangle,$ 

The optimality conditions read:

$$f(x) = \min_{y \sim \beta} \left[ C(x,y) - g(y) \right],$$
  
$$g(y) = \min_{x \sim \alpha} \left[ C(x,y) - f(x) \right].$$

Final cost:

$$\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \langle \alpha, \mathbf{f} \rangle + \langle \beta, \mathbf{g} \rangle, \\ \mathsf{S}_{\varepsilon}(\alpha,\beta) &= \mathsf{OT}_{\varepsilon}(\alpha,\beta) - \frac{1}{2}\mathsf{OT}_{\varepsilon}(\alpha,\alpha) - \frac{1}{2}\mathsf{OT}_{\varepsilon}(\beta,\beta) \\ &= \langle \alpha, \underbrace{f^{\beta \to \alpha} - f^{\alpha \leftrightarrow \alpha}}_{\mathsf{F}} \rangle + \langle \beta, \underbrace{g^{\alpha \to \beta} - g^{\beta \leftrightarrow \beta}}_{\mathsf{G}} \rangle. \end{aligned}$$

The optimality conditions read:

$$f(x) = \min_{y \sim \beta} \left[ C(x,y) - g(y) \right],$$
  
$$g(y) = \min_{x \sim \alpha} \left[ C(x,y) - f(x) \right].$$

Final cost:

$$\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \langle \alpha, f \rangle + \langle \beta, g \rangle, \\ \mathsf{S}_{\varepsilon}(\alpha,\beta) &= \mathsf{OT}_{\varepsilon}(\alpha,\beta) - \frac{1}{2}\mathsf{OT}_{\varepsilon}(\alpha,\alpha) - \frac{1}{2}\mathsf{OT}_{\varepsilon}(\beta,\beta) \\ &= \langle \alpha, \underbrace{f^{\beta \to \alpha} - f^{\alpha \leftrightarrow \alpha}}_{F} \rangle + \langle \beta, \underbrace{g^{\alpha \to \beta} - g^{\beta \leftrightarrow \beta}}_{G} \rangle. \end{aligned}$$

Is **Sinkhorn** the optimal way of computing the **de-biased** potentials **F** and **G**?

Dual  $OT_{\varepsilon}(\alpha, \beta)$  problem: high-dimensional, concave maximization.

Dual  $OT_{\varepsilon}(\alpha, \beta)$  problem: high-dimensional, concave maximization.

Unfortunately, "standard" acceleration schemes are inefficient: the gradient is **highly un-informative**.

Dual  $OT_{\varepsilon}(\alpha, \beta)$  problem: high-dimensional, concave maximization.

Unfortunately, "standard" acceleration schemes are inefficient: the gradient is **highly un-informative**.

 $\implies \textbf{Simulated annealing: let } \varepsilon \text{ decrease across iterations,} \\ \text{to leverage the structure of the problem} \\ \text{in a coarse-to-fine fashion.} \end{aligned}$ 











21

# Visualizing F, G and the Brenier map $-rac{1}{lpha_{m{x}_l}}\partial_{m{x}_l}{m{\mathsf{S}}_arepsilon}(lpha,eta)$























#### GeomLoss: a new, super-fast GPU implementation

Leverages the KeOps library [Charlier, F., Glaunès, 2018]:

#### $\implies$ pip install pykeops $\Leftarrow$



Gaussian dot product in 3D (RTX 2080 GPU)

Number of samples per measure

#### GeomLoss: a new, super-fast GPU implementation

Our website: www.kernel-operations.io/geomloss

#### $\implies$ pip install geomloss $\Leftarrow$



# Conclusion

The three regimes of Optimal Transport:

The three regimes of Optimal Transport:

- $\alpha$ ,  $\beta$  live in **dimension 1** 
  - $\Longrightarrow$  Simple sorting problem
  - $\implies$  Quicksort in  $O(N \log N)$ .

The three regimes of Optimal Transport:

- $\alpha$ ,  $\beta$  live in **dimension 1** 
  - $\Longrightarrow$  Simple sorting problem
  - $\implies$  Quicksort in  $O(N \log N)$ .

•  $\alpha$ ,  $\beta$  live in dimension 10+  $\implies C(\mathbf{x}_i, y_j)$  has very little structure  $\implies$  Compute all pairs in  $\ge O(N^2)$ .

The three regimes of Optimal Transport:

- $\alpha$ ,  $\beta$  live in **dimension 1** 
  - $\Longrightarrow$  Simple sorting problem
  - $\implies$  Quicksort in  $O(N \log N)$ .
- $\alpha$ ,  $\beta$  have a **small** intrinsic **dimension**

•  $\alpha$ ,  $\beta$  live in dimension 10+  $\implies C(\mathbf{x}_i, y_j)$  has very little structure  $\implies$  Compute all pairs in  $\ge O(N^2)$ . The three regimes of Optimal Transport:

- $\alpha$ ,  $\beta$  live in **dimension** 1
  - $\Longrightarrow$  Simple sorting problem
  - $\implies$  Quicksort in  $O(N \log N)$ .
- $\alpha$ ,  $\beta$  have a **small** intrinsic **dimension**  $\implies$  Rely on multiscale strategies

•  $\alpha$ ,  $\beta$  live in dimension 10+  $\implies C(\mathbf{x}_i, y_j)$  has very little structure  $\implies$  Compute all pairs in  $\ge O(N^2)$ . The three regimes of Optimal Transport:

- $\alpha$ ,  $\beta$  live in **dimension** 1
  - $\Longrightarrow$  Simple sorting problem
  - $\implies$  Quicksort in  $O(N \log N)$ .
- $\alpha$ ,  $\beta$  have a **small** intrinsic **dimension** 
  - $\Longrightarrow$  Rely on multiscale strategies
  - $\implies$  Multiscale Sinkhorn in  $O(N \log N)$  on the GPU.
- $\alpha, \beta$  live in dimension 10+
  - $\implies$  C( $\mathbf{x}_i, \mathbf{y}_j$ ) has very little structure
  - $\implies$  Compute all pairs in  $\ge O(N^2)$ .
The three regimes of Optimal Transport:

- $\alpha$ ,  $\beta$  live in **dimension** 1
  - $\Longrightarrow$  Simple sorting problem
  - $\implies$  Quicksort in  $O(N \log N)$ .
- $\alpha$ ,  $\beta$  have a **small** intrinsic **dimension** 
  - $\Longrightarrow$  Rely on multiscale strategies
  - $\implies$  Multiscale Sinkhorn in  $O(N \log N)$  on the GPU.
- $\alpha, \beta$  live in dimension 10+
  - $\implies$  C( $\mathbf{x}_i, \mathbf{y}_j$ ) has very little structure
  - $\implies$  Compute all pairs in  $\ge O(N^2)$ .

 $\Longrightarrow$  Multiscale Sinkhorn algorithm  $\simeq$  Multi-dimensional Quicksort.

For **users**: reliable, efficient python toolboxes:

- Fluid mechanics: github.com/sd-ot/pysdot
- Machine Learning: pot.readthedocs.io
- Graphics, large-scale ML:

www.kernel-operations.io/geomloss

For **users**: reliable, efficient python toolboxes:

- Fluid mechanics: github.com/sd-ot/pysdot
- Machine Learning: pot.readthedocs.io
- Graphics, large-scale ML:

www.kernel-operations.io/geomloss

For **us**: new interesting questions:

- How should we quantify the **convergence** of  $\varepsilon$ -scaling?
- Link between  $\mathsf{S}_{\varepsilon}$  and a **blurred Wasserstein** distance?

# Thank you for your attention.

Any questions ?













Iteration 1





















# First setting: processing of point clouds



- +  $\varphi$  is  $\mathbf{rigid}$  or affine
- Occlusions
- Outliers

# From the documentation of the Point Cloud Library.

# Second setting: medical imaging



From Marc Niethammer's Quicksilver slides.

- $\varphi$  is a spline or a **diffeomorphism**
- Ill-posed problem
- Some occlusions



Wasserstein Auto-Encoders, Tolstikhin et al., 2018.

- +  $\varphi$  is a neural network
- Very weak regularization
- High-dimensional space



- +  $\varphi$  is a neural network
- Very weak regularization
- High-dimensional space

Wasserstein Auto-Encoders, Tolstikhin et al., 2018.

Which **Loss** function should we use?

$$Loss(\alpha, \beta) = \max_{f \in B} \langle \alpha - \beta, f \rangle,$$
  
look for  $\theta^* = \arg \min_{\theta} \max_{f \in B} \langle \alpha(\theta) - \beta, f \rangle$ 

$$\mathsf{Loss}(\alpha,\beta) = \max_{f \in B} \langle \alpha - \beta, f \rangle,$$
  
look for  $\theta^* = \arg\min_{\theta} \max_{f \in B} \langle \alpha(\theta) - \beta, f \rangle$ 

• 
$$B = \{ \|f\|_{\infty} \leq 1 \} \implies \text{Loss} = \text{TV norm:}$$

- zero geometry
- too many test functions

$$Loss(\alpha, \beta) = \max_{f \in B} \langle \alpha - \beta, f \rangle,$$
  
look for  $\theta^* = \arg\min_{\theta} \max_{f \in B} \langle \alpha(\theta) - \beta, f \rangle$ 

• 
$$B = \{ \|f\|_{\infty} \leq 1 \} \implies \text{Loss} = \text{TV norm:}$$

- zero geometry
- too many test functions
- $B = \{ \|f\|_2^2 + \|\nabla f\|_2^2 + \dots \leq 1 \} \Longrightarrow$  Loss = kernel norm:
  - may saturate at infinity
  - screening artifacts

$$Loss(\alpha, \beta) = \max_{f \in B} \langle \alpha - \beta, f \rangle,$$
  
look for  $\theta^* = \arg \min_{\theta} \max_{f \in B} \langle \alpha(\theta) - \beta, f \rangle$ 

•  $B = \{ f \text{ is } 1 \text{-Lipschitz} \} \implies \text{Loss} = \text{Wasserstein-1 (OT}_0):$ 

$$Loss(\alpha, \beta) = \max_{f \in B} \langle \alpha - \beta, f \rangle,$$
  
look for  $\theta^* = \arg \min_{\theta} \max_{f \in B} \langle \alpha(\theta) - \beta, f \rangle$ 

- $B = \{ f \text{ is } 1 \text{-Lipschitz} \} \implies \text{Loss} = \text{Wasserstein-1 (OT}_0):$ 
  - + S $_{\varepsilon}$  is nearly as efficient as a closed formula

$$Loss(\alpha, \beta) = \max_{f \in B} \langle \alpha - \beta, f \rangle,$$
  
look for  $\theta^* = \arg\min_{\theta} \max_{f \in B} \langle \alpha(\theta) - \beta, f \rangle$ 

- $B = \{ f \text{ is 1-Lipschitz} \} \implies \text{Loss} = \text{Wasserstein-1 (OT_0)}:$ 
  - + S $_{\varepsilon}$  is nearly as efficient as a closed formula
  - relevant in low dimensions
  - useless in ( $\mathbb{R}^{512 \times 512}, \|\cdot\|_2$ ): the ground cost makes no sense

$$Loss(\alpha, \beta) = \max_{f \in B} \langle \alpha - \beta, f \rangle,$$
  
ook for  $\theta^* = \arg \min_{\theta} \max_{f \in B} \langle \alpha(\theta) - \beta, f \rangle$ 

- $B = \{f \text{ is } 1 \text{-Lipschitz} \} \implies \text{Loss} = \text{Wasserstein-1 (OT}_0):$ 
  - + S $_{\varepsilon}$  is nearly as efficient as a closed formula
  - relevant in low dimensions
  - useless in  $(\mathbb{R}^{512 \times 512}, \|\cdot\|_2)$ : the ground cost makes no sense
- $B \simeq \{ f \text{ is 1-Lipschitz } \} \bigcap \{ f \text{ is a CNN } \}$  $\implies \text{Loss} = \text{Wasserstein GAN }:$

$$Loss(\alpha, \beta) = \max_{f \in B} \langle \alpha - \beta, f \rangle,$$
  
ook for  $\theta^* = \arg \min_{\theta} \max_{f \in B} \langle \alpha(\theta) - \beta, f \rangle$ 

- $B = \{f \text{ is } 1 \text{-Lipschitz} \} \implies \text{Loss} = \text{Wasserstein-1 (OT}_0):$ 
  - + S $_{\varepsilon}$  is nearly as efficient as a closed formula
  - relevant in low dimensions
  - useless in  $(\mathbb{R}^{512 \times 512}, \|\cdot\|_2)$ : the ground cost makes no sense
- $B \simeq \{ f \text{ is } 1 \text{-Lipschitz} \} \bigcap \{ f \text{ is a CNN} \}$

 $\implies$  Loss = Wasserstein GAN :

• use perceptually sensible test functions

$$Loss(\alpha, \beta) = \max_{f \in B} \langle \alpha - \beta, f \rangle,$$
  
ook for  $\theta^* = \arg \min_{\theta} \max_{f \in B} \langle \alpha(\theta) - \beta, f \rangle$ 

- $B = \{f \text{ is } 1 \text{-Lipschitz} \} \implies \text{Loss} = \text{Wasserstein-1 (OT}_0):$ 
  - + S $_{\varepsilon}$  is nearly as efficient as a closed formula
  - relevant in low dimensions
  - useless in ( $\mathbb{R}^{512\times512},\|\cdot\|_2$ ): the ground cost makes no sense
- $B \simeq \{f \text{ is } 1\text{-Lipschitz }\} \bigcap \{f \text{ is a CNN }\}$

 $\implies$  Loss = Wasserstein GAN :

- use perceptually sensible test functions
- no simple formula: use gradient ascent

$$Loss(\alpha, \beta) = \max_{f \in B} \langle \alpha - \beta, f \rangle,$$
  
ook for  $\theta^* = \arg\min_{\theta} \max_{f \in B} \langle \alpha(\theta) - \beta, f \rangle$ 

- $B = \{f \text{ is } 1 \text{-Lipschitz} \} \implies \text{Loss} = \text{Wasserstein-1 (OT}_0):$ 
  - + S $_{\varepsilon}$  is nearly as efficient as a closed formula
  - relevant in low dimensions
  - useless in ( $\mathbb{R}^{512\times512},\|\cdot\|_2$ ): the ground cost makes no sense
- $B \simeq \{ f \text{ is } 1 \text{-Lipschitz} \} \bigcap \{ f \text{ is a CNN} \}$

 $\implies$  Loss = Wasserstein GAN :

- use **perceptually sensible** test functions
- no simple formula: use gradient ascent
- can we provide relevant **insights** to the ML community?

#### Our papers:

Global divergences between measures: from Hausdorff distance to
 Optimal Transport, F., Trouvé, 2018

#### Our papers:

- Global divergences between measures: from Hausdorff distance to
  Optimal Transport, F., Trouvé, 2018
- Sinkhorn entropies and divergences,
  - F., Séjourné, Vialard, Amari, Trouvé, Peyré, 2018
## Our papers:

- Global divergences between measures: from Hausdorff distance to Optimal Transport, F., Trouvé, 2018
- Sinkhorn entropies and divergences,
  F., Séjourné, Vialard, Amari, Trouvé, Peyré, 2018
- Optimal Transport for diffeomorphic registration, F., Charlier, Vialard, Peyré, 2017

Charlier, B., Feydy, J., and Glaunès, J. (2018). Kernel operations on the gpu, with autodiff, without memory overflows. http://www.kernel-operations.io. Accessed: 2019-01-20.

Chizat, L., Peyré, G., Schmitzer, B., and Vialard, F.-X. (2018).
 Unbalanced optimal transport: Dynamic and kantorovich formulations.

Journal of Functional Analysis, 274(11):3090–3123.

## References ii

Genevay, A., Peyre, G., and Cuturi, M. (2018). Learning generative models with sinkhorn divergences. In Storkey, A. and Perez-Cruz, F., editors, Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, volume 84 of Proceedings of Machine Learning Research, pages 1608–1617. PMLR.

Kaltenmark, I., Charlier, B., and Charon, N. (2017).
 A general framework for curve and surface comparison and registration with oriented varifolds.

In Computer Vision and Pattern Recognition (CVPR).

## References iii

 Kosowsky, J. and Yuille, A. L. (1994).
 The invisible hand algorithm: Solving the assignment problem with statistical physics. Neural networks, 7(3):477–490.
 Ramdas, A., Trillos, N. G., and Cuturi, M. (2017). On wasserstein two-sample testing and related families of nonparametric tests.

Entropy, 19(2).

Salimans, T., Zhang, H., Radford, A., and Metaxas, D. (2018). Improving GANs using optimal transport. arXiv preprint arXiv:1803.05573.

- Sanjabi, M., Ba, J., Razaviyayn, M., and Lee, J. D. (2018).
  On the convergence and robustness of training GANs with regularized optimal transport.
  arXiv preprint arXiv:1802.08249.
  - Schmitzer, B. (2016).

Stabilized sparse scaling algorithms for entropy regularized transport problems.

arXiv preprint arXiv:1610.06519.