Discrete Optimal Transport: Scaling up to 1,000,000 samples in 1s

Jean Feydy Cortona, Tuscany – June 2019

Écoles Normales Supérieures de Paris et Paris-Saclay Collaboration with B. Charlier, J. Claunès (KeOps library); F.-X. Vialard, G. Peyré, T. Séjourné, A. Trouvé (OT theory).

Source A, target B,

Source **A**, target **B**, mapping φ

Source **A**, target **B**, mapping φ

Source A, target B, mapping φ

On labeled shapes, use a spring energy

Anatomical landmarks from A morphometric approach for the analysis of body shape in bluefin tuna, Addis et al., 2009.

On labeled shapes, use a spring energy

Anatomical landmarks from A morphometric approach for the analysis of body shape in bluefin tuna, Addis et al., 2009.

Encoding unlabeled shapes as measures

Let's enforce sampling invariance:

$$A \longrightarrow \alpha = \sum_{i=1}^{N} \alpha_i \delta_{\mathbf{x}_i}, \qquad B \longrightarrow \beta = \sum_{j=1}^{M} \beta_j \delta_{\mathbf{y}_j}.$$

Let's enforce sampling invariance:

$$\mathsf{A} \ \longrightarrow \ \alpha \ = \ \sum_{i=1}^{\mathsf{N}} \alpha_i \delta_{\mathsf{x}_i} \,, \qquad \mathsf{B} \ \longrightarrow \ \beta \ = \ \sum_{j=1}^{\mathsf{M}} \beta_j \delta_{y_j} \,.$$

Let's enforce sampling invariance:

$$\mathsf{A} \ \longrightarrow \ \alpha \ = \ \sum_{i=1}^{\mathsf{N}} \alpha_i \delta_{\mathsf{x}_i} \,, \qquad \mathsf{B} \ \longrightarrow \ \beta \ = \ \sum_{j=1}^{\mathsf{M}} \beta_j \delta_{\mathsf{y}_j} \,.$$

$$\alpha = \sum_{i=1}^{N} \alpha_i \delta_{\mathbf{x}_i}, \quad \beta = \sum_{j=1}^{M} \beta_j \delta_{\mathbf{y}_j}.$$

$$\alpha = \sum_{i=1}^{N} \alpha_i \delta_{x_i}, \quad \beta = \sum_{j=1}^{M} \beta_j \delta_{y_j}.$$
$$\sum_{i=1}^{N} \alpha_i = 1 = \sum_{j=1}^{M} \beta_j$$

(

$$\alpha = \sum_{i=1}^{N} \alpha_i \delta_{\mathbf{x}_i}, \quad \beta = \sum_{j=1}^{M} \beta_j \delta_{\mathbf{y}_j}.$$
$$\sum_{i=1}^{N} \alpha_i = 1 = \sum_{j=1}^{M} \beta_j$$

Display $v = -\nabla_{\mathbf{x}_i} \text{Loss}(\boldsymbol{\alpha}, \boldsymbol{\beta}).$

$$\alpha = \sum_{i=1}^{N} \alpha_i \delta_{\mathbf{x}_i}, \quad \beta = \sum_{j=1}^{M} \beta_j \delta_{\mathbf{y}_j}.$$
$$\sum_{i=1}^{N} \alpha_i = 1 = \sum_{j=1}^{M} \beta_j$$
Display $v = -\nabla_{\mathbf{x}_i} \text{Loss}(\alpha, \beta).$

Seamless extensions to:

- $\sum_{i} \alpha_{i} \neq \sum_{j} \beta_{j}$, outliers [Chizat et al., 2018],
- curves and surfaces [Kaltenmark et al., 2017],
- variable weights α_i .

$$t = .25$$

$$t = .50$$

$$t = 1.00$$

$$t = 5.00$$

The Wasserstein distance is a convenient baseline... But will it scale to 3D meshes?

Introducing the Optimal Transport problem

Minimize over N-by-M matrices (transport plans) π :

$$OT(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \min_{\pi} \underbrace{\sum_{i,j} \pi_{i,j} \cdot \frac{1}{2} |\mathbf{x}_i - \mathbf{y}_j|^2}_{\text{transport cost}}$$

subject to $\pi_{i,j} \ge 0$, $\sum_{j} \pi_{i,j} = \alpha_{i}, \sum_{i} \pi_{i,j} = \beta_{j}.$

$$OT(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \min_{\boldsymbol{\pi}} \langle \boldsymbol{\pi}, \boldsymbol{C} \rangle, \text{ with } C(\mathbf{x}_i, y_j) = \frac{1}{p} ||\mathbf{x}_i - y_j||^p \longrightarrow \text{Assignment}$$

s.t. $\boldsymbol{\pi} \ge 0, \quad \boldsymbol{\pi} \mathbf{1} = \boldsymbol{\alpha}, \quad \boldsymbol{\pi}^{\mathsf{T}} \mathbf{1} = \boldsymbol{\beta}$

$$OT(\alpha, \beta) = \min_{\pi} \langle \pi, C \rangle, \text{ with } C(\mathbf{x}_i, y_j) = \frac{1}{p} ||\mathbf{x}_i - y_j||^p \longrightarrow \text{Assignment}$$

s.t. $\pi \ge 0, \quad \pi \mathbf{1} = \alpha, \quad \pi^{\mathsf{T}} \mathbf{1} = \beta$

 $\sum_{i,j} \pi_{i,j} C(\mathbf{x}_i, \mathbf{y}_j)$

$$OT(\alpha, \beta) = \min_{\pi} \langle \pi, C \rangle, \text{ with } C(\mathbf{x}_i, y_j) = \frac{1}{p} ||\mathbf{x}_i - y_j||^p \longrightarrow \text{Assignment}$$

s.t. $\pi \ge 0, \quad \pi \mathbf{1} = \alpha, \quad \pi^{\mathsf{T}} \mathbf{1} = \beta$

$$OT(\alpha, \beta) = \min_{\pi} \langle \pi, C \rangle, \text{ with } C(\mathbf{x}_i, y_j) = \frac{1}{p} ||\mathbf{x}_i - y_j||^p \longrightarrow \text{Assignment}$$

s.t. $\pi \ge 0, \quad \pi \mathbf{1} = \alpha, \quad \pi^{\mathsf{T}} \mathbf{1} = \beta$


```
\sum_{i,j} \pi_{i,j} \operatorname{C}(\mathbf{x}_i, \mathbf{y}_j)
```


$$OT(\alpha, \beta) = \min_{\pi} \langle \pi, C \rangle, \text{ with } C(\mathbf{x}_i, y_j) = \frac{1}{p} ||\mathbf{x}_i - y_j||^p \longrightarrow \text{Assignment}$$

s.t. $\pi \ge 0, \quad \pi \mathbf{1} = \alpha, \quad \pi^{\mathsf{T}} \mathbf{1} = \beta$

 $\sum_{i,j} \pi_{i,j} \operatorname{C}(\mathbf{x}_i, \mathbf{y}_j)$

$$OT(\alpha, \beta) = \min_{\pi} \langle \pi, C \rangle, \text{ with } C(\mathbf{x}_i, y_j) = \frac{1}{p} ||\mathbf{x}_i - y_j||^p \longrightarrow \text{Assignment}$$

s.t. $\pi \ge 0, \quad \pi \mathbf{1} = \alpha, \quad \pi^{\mathsf{T}} \mathbf{1} = \beta$

 $\sum_{i,j} \pi_{i,j} C(\mathbf{x}_i, \mathbf{y}_j)$

$$OT(\alpha, \beta) = \min_{\pi} \langle \pi, C \rangle, \text{ with } C(\mathbf{x}_i, y_j) = \frac{1}{p} ||\mathbf{x}_i - y_j||^p \longrightarrow \text{Assignment}$$

s.t. $\pi \ge 0, \quad \pi \mathbf{1} = \alpha, \quad \pi^{\mathsf{T}} \mathbf{1} = \beta$

$$\begin{array}{ll} \max_{f,g} & \langle \alpha, f \rangle + \langle \beta, g \rangle & \longrightarrow \mathsf{FedEx} \\ \text{s.t.} & f(\mathsf{x}_i) + g(y_j) \leqslant \mathsf{C}(\mathsf{x}_i, y_j), \end{array}$$

$$OT(\alpha, \beta) = \min_{\pi} \langle \pi, C \rangle, \text{ with } C(\mathbf{x}_i, \mathbf{y}_j) = \frac{1}{p} ||\mathbf{x}_i - \mathbf{y}_j||^p \longrightarrow \text{Assignment}$$

s.t. $\pi \ge 0, \quad \pi \mathbf{1} = \alpha, \quad \pi^{\mathsf{T}} \mathbf{1} = \beta$

$$= \max_{\substack{f,g \\ \text{s.t.}}} \langle \alpha, f \rangle + \langle \beta, g \rangle \longrightarrow \mathsf{FedEx}$$

s.t. $f(x_i) + g(y_j) \leqslant \mathsf{C}(x_i, y_j),$

 α , $\beta \ge 0$, separable constraint $f(x_i) + g(y_j) \le C(x_i, y_j)$: Couldn't we maximize the prices f and g alternatively?

 α , $\beta \ge 0$, separable constraint $f(x_i) + g(y_j) \le C(x_i, y_j)$: Couldn't we maximize the prices f and g alternatively?

 $f_i \leftarrow \mathbf{O}_{\mathbb{R}^N}$; $g_j \leftarrow \mathbf{O}_{\mathbb{R}^M}$

 α , $\beta \ge 0$, separable constraint $f(x_i) + g(y_j) \le C(x_i, y_j)$: Couldn't we maximize the prices f and g alternatively?

$$f_i \leftarrow \mathbf{O}_{\mathbb{R}^{\mathsf{N}}}$$
; $g_j \leftarrow \mathbf{O}_{\mathbb{R}^{\mathsf{M}}}$

Until convergence:
Combinatorial, on the simplex \implies Hungarian method in $O(N^3)$.

 α , $\beta \ge 0$, separable constraint $f(x_i) + g(y_j) \le C(x_i, y_j)$: Couldn't we maximize the prices f and g alternatively?

 $f_i \leftarrow \mathsf{O}_{\mathbb{R}^{\mathsf{N}}}$; $g_j \leftarrow \mathsf{O}_{\mathbb{R}^{\mathsf{M}}}$

Until convergence:

 $f_i = f(\mathbf{x}_i) \leftarrow \min_{\mathbf{y}_j \in \mathrm{Supp}(\beta)} \big[C(\mathbf{x}_i, \mathbf{y}_j) - g(\mathbf{y}_j) \big]$

Combinatorial, on the simplex \implies Hungarian method in $O(N^3)$.

 α , $\beta \ge 0$, separable constraint $f(x_i) + g(y_j) \le C(x_i, y_j)$: Couldn't we maximize the prices f and g alternatively?

 $f_i \leftarrow \mathbf{O}_{\mathbb{R}^N}$; $g_j \leftarrow \mathbf{O}_{\mathbb{R}^M}$

Until convergence:

 $f_i = f(x_i) \leftarrow \min_{y_j \in \text{Supp}(\beta)} \left[C(x_i, y_j) - g(y_j) \right]$ $g_j = g(y_j) \leftarrow \min_{x_i \in \text{Supp}(\alpha)} \left[C(x_i, y_j) - f(x_i) \right]$ **Combinatorial**, on the simplex \implies Hungarian method in $O(N^3)$.

 α , $\beta \ge 0$, separable constraint $f(x_i) + g(y_j) \le C(x_i, y_j)$: Couldn't we maximize the prices f and g alternatively?

 $f_i \leftarrow \mathbf{0}_{\mathbb{R}^{\mathsf{N}}}$; $g_j \leftarrow \mathbf{0}_{\mathbb{R}^{\mathsf{M}}}$

Until convergence:

 $f_i = f(x_i) \leftarrow \min_{y_j \in \text{Supp}(\beta)} \left[C(x_i, y_j) - g(y_j) \right]$ $g_j = g(y_j) \leftarrow \min_{x_i \in \text{Supp}(\alpha)} \left[C(x_i, y_j) - f(x_i) \right]$

 \implies Too greedy! We get stuck after two iterations.

Auction algorithm (Dimitri Bertsekas, 1980's):

 $f_i \leftarrow \mathbf{O}_{\mathbb{R}^{\mathsf{N}}}; \quad g_j \leftarrow \mathbf{O}_{\mathbb{R}^{\mathsf{M}}}$

Until convergence:

 $\begin{aligned} f_i &= f(\mathbf{x}_i) \leftarrow \min_{y_j \in \text{Supp}(\beta)} \left[C(\mathbf{x}_i, y_j) - g(y_j) \right] \\ g_j &= g(y_j) \leftarrow \min_{\mathbf{x}_i \in \text{Supp}(\alpha)} \left[C(\mathbf{x}_i, y_j) - f(\mathbf{x}_i) \right] \ "- \varepsilon" \end{aligned}$

Auction algorithm (Dimitri Bertsekas, 1980's):

 $f_i \leftarrow \mathbf{O}_{\mathbb{R}^N}$; $g_j \leftarrow \mathbf{O}_{\mathbb{R}^M}$

Until convergence:

$$\begin{aligned} f_i &= f(\mathbf{x}_i) \ \leftarrow \ \min_{\mathbf{y}_j \in \mathrm{Supp}(\beta)} \big[\, \mathrm{C}(\mathbf{x}_i, \mathbf{y}_j) - g(\mathbf{y}_j) \, \big] \\ g_j &= g(\mathbf{y}_j) \ \leftarrow \ \min_{\mathbf{x}_i \in \mathrm{Supp}(\alpha)} \big[\, \mathrm{C}(\mathbf{x}_i, \mathbf{y}_j) - f(\mathbf{x}_i) \, \big] \ ``- \ \varepsilon `` \end{aligned}$$

 $\implies \varepsilon$ -optimal solutions in $O(N^2 \cdot \max_{\alpha \otimes \beta} C / \varepsilon)$.

Auction algorithm (Dimitri Bertsekas, 1980's):

 $f_i \leftarrow \mathbf{O}_{\mathbb{R}^N}$; $g_j \leftarrow \mathbf{O}_{\mathbb{R}^M}$

Until convergence:

$$\begin{aligned} f_i &= f(\mathbf{x}_i) \ \leftarrow \ \min_{\mathbf{y}_j \in \mathrm{Supp}(\beta)} \left[\, \mathrm{C}(\mathbf{x}_i, \mathbf{y}_j) - g(\mathbf{y}_j) \, \right] \\ g_j &= g(\mathbf{y}_j) \ \leftarrow \ \min_{\mathbf{x}_i \in \mathrm{Supp}(\alpha)} \left[\, \mathrm{C}(\mathbf{x}_i, \mathbf{y}_j) - f(\mathbf{x}_i) \, \right] \ ``- \ \varepsilon `` \end{aligned}$$

 $\implies \varepsilon \text{-optimal solutions in } O(N^2 \cdot \max_{\alpha \otimes \beta} C \ / \ \varepsilon).$

- \implies What about our **weights** α and β ?
- \Longrightarrow Can we symmetrize all this?

The SoftMin interpolates between a minimum and a sum

$$\log(e^{c} + e^{d}) = \max(c, d) + \log\left(\underbrace{e^{c-\max(c,d)} + e^{d-\max(c,d)}}_{\in [1,2]}\right)$$

The SoftMin interpolates between a minimum and a sum

$$\log(e^{c} + e^{d}) = \max(c, d) + \log\left(\underbrace{e^{c-\max(c,d)} + e^{d-\max(c,d)}}_{\in [1,2]}\right)$$

Building on this, for a **regularization** parameter $\varepsilon > 0$, we define

$$\min_{\varepsilon, y \sim \beta} \varphi(\mathbf{x}, y) = -\varepsilon \log \sum_{j=1}^{M} \beta_j \exp \left[-\frac{1}{\varepsilon} \varphi(\mathbf{x}, y_j) \right]$$

The SoftMin interpolates between a minimum and a sum

$$\log(e^{c} + e^{d}) = \max(c, d) + \log(\underbrace{e^{c - \max(c, d)} + e^{d - \max(c, d)}}_{\in [1, 2]})$$

Building on this, for a **regularization** parameter $\varepsilon > 0$, we define

$$\min_{\varepsilon, y \sim \beta} \varphi(\mathbf{x}, y) = -\varepsilon \log \sum_{j=1}^{M} \beta_j \exp \left[-\frac{1}{\varepsilon} \varphi(\mathbf{x}, y_j) \right]$$

The IPFP–SoftAssign–Sinkhorn algorithm:

$$\mathbf{f}_{i} \leftarrow \mathbf{0}_{\mathbb{R}^{\mathsf{N}}}$$
 ; $\mathbf{g}_{j} \leftarrow \mathbf{0}_{\mathbb{R}^{\mathsf{M}}}$

Until convergence:

$$\begin{aligned} f_i &= f(\mathbf{x}_i) \ \leftarrow \ \min_{\varepsilon, \ \mathbf{y} \sim \beta} \left[\ \mathsf{C}(\mathbf{x}_i, y_j) - g(y_j) \right] \\ g_j &= g(y_j) \ \leftarrow \ \min_{\varepsilon, \ \mathbf{x} \sim \alpha} \left[\ \mathsf{C}(\mathbf{x}_i, y_j) - f(\mathbf{x}_i) \right] \end{aligned}$$

$$\log(e^{c} + e^{d}) = \max(c, d) + \log(\underbrace{e^{c - \max(c, d)} + e^{d - \max(c, d)}}_{\in [1, 2]})$$

Building on this, for a **regularization** parameter $\varepsilon > 0$, we define

$$\min_{\varepsilon, y \sim \beta} \varphi(\mathbf{x}, y) = -\varepsilon \log \sum_{j=1}^{M} \beta_j \exp \left[-\frac{1}{\varepsilon} \varphi(\mathbf{x}, y_j) \right]$$

The IPFP–SoftAssign–Sinkhorn algorithm:

$$\mathbf{f}_{i} \leftarrow \mathbf{0}_{\mathbb{R}^{\mathsf{N}}}$$
 ; $\mathbf{g}_{j} \leftarrow \mathbf{0}_{\mathbb{R}^{\mathsf{M}}}$

Until convergence:

$$\begin{aligned} f_i &= f(\mathbf{x}_i) \ \leftarrow \ \min_{\varepsilon, \ \mathbf{y} \sim \beta} \left[\ \mathsf{C}(\mathbf{x}_i, \mathbf{y}_j) - g(\mathbf{y}_j) \right] \\ g_j &= g(\mathbf{y}_j) \ \leftarrow \ \min_{\varepsilon, \ \mathbf{x} \sim \alpha} \left[\ \mathsf{C}(\mathbf{x}_i, \mathbf{y}_j) - f(\mathbf{x}_i) \right] \end{aligned}$$

 \implies This **simple** algorithm works well!

Entropic regularization: introducing Schrödinger's problem

For
$$\varepsilon > 0$$
:
 $DT_{\varepsilon}(\alpha, \beta) = \min_{\pi} \underbrace{\sum_{i,j} \pi_{i,j} \cdot \frac{1}{2} |\mathbf{x}_i - \mathbf{y}_j|^2}_{\text{transport cost}}$

subject to

$$\sum_{j} \pi_{i,j} = \alpha_{i}, \quad \sum_{i} \pi_{i,j} = \beta_{j}.$$

$$OT_{\varepsilon}(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \min_{\pi} \langle \pi, \mathsf{C} \rangle + \varepsilon \operatorname{KL}(\pi, \boldsymbol{\alpha} \otimes \boldsymbol{\beta}) \longrightarrow \operatorname{Fuzzy assignment}$$

s.t. $\pi \mathbf{1} = \boldsymbol{\alpha}, \qquad \pi^{\mathsf{T}} \mathbf{1} = \boldsymbol{\beta}$

 $\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \min_{\pi} \langle \pi,\mathsf{C} \rangle + \varepsilon \,\mathsf{KL}(\pi,\alpha\otimes\beta) &\longrightarrow \mathsf{Fuzzy} \text{ assignment} \\ \text{s.t.} & \pi \,\mathbf{1} = \alpha, \qquad \pi^\mathsf{T} \,\mathbf{1} = \beta \\ &= \max_{f,g} \langle \alpha,f \rangle + \langle \beta,g \rangle &\longrightarrow \mathsf{Cheeky} \,\mathsf{FedEx} \\ &\quad -\underbrace{\varepsilon \langle \alpha\otimes\beta, e^{(f\oplus g-\mathsf{C})/\varepsilon} - 1 \rangle}_{\text{soft constraint } f\oplus g \leqslant \mathsf{C}} \end{aligned}$

 $\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \min_{\pi} \langle \pi,\mathsf{C} \rangle + \varepsilon \,\mathsf{KL}(\pi,\alpha\otimes\beta) &\longrightarrow \mathsf{Fuzzy} \text{ assignment} \\ \text{s.t.} & \pi \,\mathbf{1} = \alpha, \qquad \pi^\mathsf{T} \,\mathbf{1} = \beta \\ &= \max_{f,g} \langle \alpha,f \rangle + \langle \beta,g \rangle &\longrightarrow \mathsf{Cheeky} \,\mathsf{FedEx} \\ &\quad -\underbrace{\varepsilon \langle \alpha\otimes\beta, e^{(f\oplus g-\mathsf{C})/\varepsilon} - 1 \rangle}_{\mathsf{soft} \,\mathsf{constraint} \, f\oplus g \leqslant \mathsf{C}} \end{aligned}$

At the optimum, $\pi = e^{(f \oplus g - C)/\varepsilon} \cdot \alpha \otimes \beta$ i.e. $\pi_{i,j} = \alpha_i e^{f_i/\varepsilon} e^{-C(\mathbf{x}_i, \mathbf{y}_j)/\varepsilon} e^{g_j/\varepsilon} \beta_j$.

Sinkhorn algorithm = coordinate ascent on the dual problem

$$OT_{\varepsilon}(\alpha,\beta) = \max_{f,g} \langle \alpha, f \rangle + \langle \beta, g \rangle \longrightarrow Cheeky \ FedEx$$
$$-\underbrace{\varepsilon \langle \alpha \otimes \beta, e^{(f \oplus g - C)/\varepsilon} - 1 \rangle}_{\text{soft constraint } f \oplus g \leq C}$$

Sinkhorn algorithm = coordinate ascent on the dual problem

$$OT_{\varepsilon}(\alpha,\beta) = \max_{f,g} \langle \alpha, f \rangle + \langle \beta, g \rangle \longrightarrow Cheeky \ FedEx$$
$$-\underbrace{\varepsilon \langle \alpha \otimes \beta, e^{(f \oplus g - C)/\varepsilon} - 1 \rangle}_{\text{soft constraint } f \oplus g \leqslant C}$$

Equivalent to the constraints on π , the optimality conditions read:

$$f(\mathbf{x}) = \min_{\mathbf{y} \sim \beta} \left[C(\mathbf{x}, \mathbf{y}) - g(\mathbf{y}) \right],$$
$$g(\mathbf{y}) = \min_{\mathbf{x} \sim \alpha} \left[C(\mathbf{x}, \mathbf{y}) - f(\mathbf{x}) \right].$$

Sinkhorn algorithm = coordinate ascent on the dual problem

$$OT_{\varepsilon}(\alpha,\beta) = \max_{f,g} \langle \alpha, f \rangle + \langle \beta, g \rangle \longrightarrow Cheeky \ FedEx$$
$$-\underbrace{\varepsilon \langle \alpha \otimes \beta, e^{(f \oplus g - C)/\varepsilon} - 1 \rangle}_{\text{soft constraint } f \oplus g \leqslant C}$$

Equivalent to the constraints on π , the optimality conditions read:

$$f(\mathbf{x}) = \min_{\mathbf{y} \sim \beta} \left[C(\mathbf{x}, \mathbf{y}) - g(\mathbf{y}) \right],$$
$$g(\mathbf{y}) = \min_{\mathbf{x} \sim \alpha} \left[C(\mathbf{x}, \mathbf{y}) - f(\mathbf{x}) \right].$$

$$OT_{\varepsilon}(\alpha,\beta) = \max_{f,g} \langle \alpha, f \rangle + \langle \beta, g \rangle \longrightarrow Cheeky \ FedEx$$
$$-\underbrace{\varepsilon \langle \alpha \otimes \beta, e^{(f \oplus g - C)/\varepsilon} - 1 \rangle}_{\text{soft constraint } f \oplus g \leqslant C}$$

Equivalent to the constraints on π , the optimality conditions read:

$$f(x) = \min_{y \sim \beta} \left[C(x,y) - g(y) \right],$$
$$g(y) = \min_{x \sim \alpha} \left[C(x,y) - f(x) \right].$$

 \implies Let's enforce them alternatively!

Re-inventing the wheel, every twenty years or so

TPS-RPM algorithm, Chui and Rangarajan, CVPR **2000** Optimal Transport for diffeomorphic registration, Feydy et al., MICCAI **2017**

Re-inventing the wheel, every twenty years or so

TPS-RPM algorithm, Chui and Rangarajan, CVPR **2000** Optimal Transport for diffeomorphic registration, Feydy et al., MICCAI **2017**

 \implies We've added weights, orientations, convergence analysis... But shouldn't we go a bit **further**? It's 2019 now: What's new?

Registrating circles, $C(x, y) = ||x - y||^2$, $\sqrt{\varepsilon} = 0.1$:

Registrating circles, $C(x, y) = ||x - y||^2$, $\sqrt{\varepsilon} = 0.1$:

Registrating circles, $C(x, y) = ||x - y||^2$, $\sqrt{\varepsilon} = 0.1$:

Registrating circles, $C(x, y) = ||x - y||^2$, $\sqrt{\varepsilon} = 0.2$:

Registrating circles, $C(x, y) = ||x - y||^2$, $\sqrt{\varepsilon} = 0.2$:

Registrating circles, $C(x, y) = ||x - y||^2$, $\sqrt{\varepsilon} = 0.2$:

Registrating circles, $C(x, y) = ||x - y||^2$, $\sqrt{\varepsilon} = 0.2$:

Bad news: for $0 < \varepsilon \leq +\infty$, we converge towards α such that

 $\mathsf{OT}_{\varepsilon}(\boldsymbol{\alpha}, \boldsymbol{\beta}) < \mathsf{OT}_{\varepsilon}(\boldsymbol{\beta}, \boldsymbol{\beta}).$

Standard solution: use an annealing scheme in the descent

TPS-RPM algorithm, Chui and Rangarajan, CVPR 2000

Standard solution: use an annealing scheme in the descent

TPS-RPM algorithm, Chui and Rangarajan, CVPR 2000

⇒ Cumbersome and brittle workaround, with parameters to tune. $OT_{\varepsilon}(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \min_{\boldsymbol{\pi}} \langle \boldsymbol{\pi}, \boldsymbol{C} \rangle + \varepsilon \operatorname{KL}(\boldsymbol{\pi}, \boldsymbol{\alpha} \otimes \boldsymbol{\beta}) \longrightarrow \operatorname{Fuzzy assignment}$ s.t. $\boldsymbol{\pi} \mathbf{1} = \boldsymbol{\alpha}, \qquad \boldsymbol{\pi}^{\mathsf{T}} \mathbf{1} = \boldsymbol{\beta}$ $\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \min_{\pi} \langle \pi,\mathsf{C} \rangle + \varepsilon \,\mathsf{KL}(\pi,\alpha\otimes\beta) &\longrightarrow \mathsf{Fuzzy} \text{ assignment} \\ \text{s.t.} \quad \pi \,\mathbf{1} &= \alpha, \qquad \pi^{\mathsf{T}}\mathbf{1} &= \beta \\ \\ \mathsf{OT}_{\varepsilon}(\alpha,\beta) & \xrightarrow{\varepsilon \to +\infty} & \langle \alpha\otimes\beta,\mathsf{C} \rangle &= \langle \alpha,\mathsf{C}\star\beta \rangle \end{aligned}$

 $\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \min_{\pi} \langle \pi,\mathsf{C} \rangle + \varepsilon \,\mathsf{KL}(\pi,\alpha\otimes\beta) &\longrightarrow \mathsf{Fuzzy} \text{ assignment} \\ \text{s.t.} \quad \pi \,\mathbf{1} \,=\, \alpha, \qquad \pi^\mathsf{T} \,\mathbf{1} \,=\, \beta \end{aligned}$

 $\mathsf{OT}_{\varepsilon}(\alpha,\beta) \qquad \xrightarrow{\varepsilon \to +\infty} \qquad \langle \alpha \otimes \beta \,,\, \mathsf{C} \,\rangle \ = \ \langle \alpha \,,\, \mathsf{C} \,\star\, \beta \,\rangle$

Define the Sinkhorn divergence [Ramdas et al., 2017]:

$$\mathsf{S}_{\varepsilon}(\alpha,\beta) = \mathsf{OT}_{\varepsilon}(\alpha,\beta) - \frac{1}{2}\mathsf{OT}_{\varepsilon}(\alpha,\alpha) - \frac{1}{2}\mathsf{OT}_{\varepsilon}(\beta,\beta)$$

$$\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \min_{\pi} \langle \pi,\mathsf{C} \rangle + \varepsilon \,\mathsf{KL}(\pi,\alpha\otimes\beta) &\longrightarrow \mathsf{Fuzzy} \text{ assignment} \\ \text{s.t.} \quad \pi \,\mathbf{1} \,=\, \alpha, \qquad \pi^{\mathsf{T}}\mathbf{1} \,=\, \beta \end{aligned}$$

$$\mathsf{OT}_{\varepsilon}(\alpha,\beta) \qquad \xrightarrow{\varepsilon \to +\infty} \qquad \langle \alpha \otimes \beta \,,\, \mathsf{C} \,\rangle \ = \ \langle \alpha \,,\, \mathsf{C} \,\star\, \beta \,\rangle$$

Define the Sinkhorn divergence [Ramdas et al., 2017]:

$$S_{\varepsilon}(\alpha,\beta) = OT_{\varepsilon}(\alpha,\beta) - \frac{1}{2}OT_{\varepsilon}(\alpha,\alpha) - \frac{1}{2}OT_{\varepsilon}(\beta,\beta)$$

 $\mathsf{Wasserstein}_{+\mathsf{C}}(\alpha,\beta) \xleftarrow{\varepsilon \to 0} \mathsf{S}_{\varepsilon}(\alpha,\beta) \xrightarrow{\varepsilon \to +\infty} \frac{1}{2} \langle \alpha - \beta, -\mathsf{C} \star (\alpha - \beta) \rangle$

$$\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \min_{\pi} \langle \pi,\mathsf{C} \rangle + \varepsilon \,\mathsf{KL}(\pi,\alpha\otimes\beta) &\longrightarrow \mathsf{Fuzzy} \text{ assignment} \\ \text{s.t.} \quad \pi \,\mathbf{1} \,=\, \alpha, \qquad \pi^{\mathsf{T}}\mathbf{1} \,=\, \beta \end{aligned}$$

$$\mathsf{OT}_{\varepsilon}(\alpha,\beta) \qquad \xrightarrow{\varepsilon \to +\infty} \qquad \langle \alpha \otimes \beta \,,\, \mathsf{C} \,\rangle \ = \ \langle \alpha \,,\, \mathsf{C} \,\star\, \beta \,\rangle$$

Define the Sinkhorn divergence [Ramdas et al., 2017]:

$$S_{\varepsilon}(\alpha,\beta) = OT_{\varepsilon}(\alpha,\beta) - \frac{1}{2}OT_{\varepsilon}(\alpha,\alpha) - \frac{1}{2}OT_{\varepsilon}(\beta,\beta)$$

 $\mathsf{Wasserstein}_{+\mathsf{C}}(\alpha,\beta) \xleftarrow{\varepsilon \to 0} \mathsf{S}_{\varepsilon}(\alpha,\beta) \xrightarrow{\varepsilon \to +\infty} \frac{1}{2} \langle \alpha - \beta, -\mathsf{C} \star (\alpha - \beta) \rangle$

In practice, S_{ε} is "good enough" for ML applications [Genevay et al., 2018, Salimans et al., 2018, Sanjabi et al., 2018].

In our papers: theoretical guarantees

Theorem (F., Séjourné, Vialard, Amari, Trouvé, Peyré; 2018) For all probability measures *α*, *β* and regularization $\varepsilon > 0$:
Theorem (F., Séjourné, Vialard, Amari, Trouvé, Peyré; 2018) For all probability measures *α*, *β* and regularization $\varepsilon > 0$:

 $0 \leqslant S_{arepsilon}(oldsymbol{lpha},eta)$ with equality iff. $oldsymbol{lpha}=eta$

Theorem (F., Séjourné, Vialard, Amari, Trouvé, Peyré; 2018) For all probability measures *α*, *β* and regularization $\varepsilon > 0$:

 $0 \leqslant S_{arepsilon}(oldsymbol{lpha},eta)$ with equality iff. $oldsymbol{lpha}=eta$

 $lpha\mapsto \mathsf{S}_arepsilon(lpha,eta)$ is convex and differentiable

Theorem (F., Séjourné, Vialard, Amari, Trouvé, Peyré; 2018) For all probability measures *α*, *β* and regularization $\varepsilon > 0$:

 $0 \leqslant S_{\varepsilon}(\alpha, \beta)$ with equality iff. $\alpha = \beta$

 $lpha\mapsto \mathsf{S}_arepsilon(lpha,eta)$ is convex and differentiable

These results can be generalized to **unbalanced OT** and arbitrary **feature** spaces – e.g. (position, orientation) $\simeq \mathbb{R}^3 \times \mathbb{S}^2$.

Theorem (F., Séjourné, Vialard, Amari, Trouvé, Peyré; 2018) For all probability measures *α*, *β* and regularization $\varepsilon > 0$:

 $0 \leqslant S_{\varepsilon}(\alpha, \beta)$ with equality iff. $\alpha = \beta$

 $lpha\mapsto \mathsf{S}_arepsilon(lpha,eta)$ is convex and differentiable

These results can be generalized to **unbalanced OT** and arbitrary **feature** spaces – e.g. (position, orientation) $\simeq \mathbb{R}^3 \times \mathbb{S}^2$.

The optimality conditions read:

$$f(x) = \min_{\substack{y \sim \beta}} \left[C(x, y) - g(y) \right],$$

$$g(y) = \min_{\substack{x \sim \alpha}} \left[C(x, y) - f(x) \right].$$

The optimality conditions read:

$$f(x) = \min_{\substack{y \sim \beta}} \left[C(x,y) - g(y) \right],$$

$$g(y) = \min_{\substack{x \sim \alpha}} \left[C(x,y) - f(x) \right].$$

Final cost:

 $\mathsf{OT}_{\varepsilon}(\alpha,\beta) \;=\; \langle \, \alpha \,, \, f \rangle \;+\; \langle \, \beta \,, \, g \, \rangle,$

The optimality conditions read:

$$f(x) = \min_{y \sim \beta} \left[C(x,y) - g(y) \right],$$

$$g(y) = \min_{x \sim \alpha} \left[C(x,y) - f(x) \right].$$

Final cost:

$$\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \langle \alpha, \mathbf{f} \rangle + \langle \beta, \mathbf{g} \rangle, \\ \mathsf{S}_{\varepsilon}(\alpha,\beta) &= \mathsf{OT}_{\varepsilon}(\alpha,\beta) - \frac{1}{2}\mathsf{OT}_{\varepsilon}(\alpha,\alpha) - \frac{1}{2}\mathsf{OT}_{\varepsilon}(\beta,\beta) \\ &= \langle \alpha, \underbrace{f^{\beta \to \alpha} - f^{\alpha \leftrightarrow \alpha}}_{\mathsf{F}} \rangle + \langle \beta, \underbrace{g^{\alpha \to \beta} - g^{\beta \leftrightarrow \beta}}_{\mathsf{G}} \rangle. \end{aligned}$$

The optimality conditions read:

$$f(x) = \min_{y \sim \beta} \left[C(x,y) - g(y) \right],$$

$$g(y) = \min_{x \sim \alpha} \left[C(x,y) - f(x) \right].$$

Final cost:

$$\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \langle \alpha, f \rangle + \langle \beta, g \rangle, \\ \mathsf{S}_{\varepsilon}(\alpha,\beta) &= \mathsf{OT}_{\varepsilon}(\alpha,\beta) - \frac{1}{2}\mathsf{OT}_{\varepsilon}(\alpha,\alpha) - \frac{1}{2}\mathsf{OT}_{\varepsilon}(\beta,\beta) \\ &= \langle \alpha, \underbrace{f^{\beta \to \alpha} - f^{\alpha \leftrightarrow \alpha}}_{F} \rangle + \langle \beta, \underbrace{g^{\alpha \to \beta} - g^{\beta \leftrightarrow \beta}}_{G} \rangle. \end{aligned}$$

Is **Sinkhorn** the optimal way of computing the **de-biased** potentials **F** and **G**?

Dual $OT_{\varepsilon}(\alpha, \beta)$ problem: high-dimensional, concave maximization.

Dual $OT_{\varepsilon}(\alpha, \beta)$ problem: high-dimensional, concave maximization.

Unfortunately, "standard" acceleration schemes are inefficient: the gradient is **highly un-informative**.

Dual $OT_{\varepsilon}(\alpha, \beta)$ problem: high-dimensional, concave maximization.

Unfortunately, "standard" acceleration schemes are inefficient: the gradient is **highly un-informative**.

 $\implies \textbf{Simulated annealing: let } \varepsilon \text{ decrease across iterations,} \\ \text{to leverage the structure of the problem} \\ \text{in a coarse-to-fine fashion.} \end{aligned}$

21

Visualizing F, G and the Brenier map $-rac{1}{lpha_{m{x}_l}}\partial_{m{x}_l}{m{\mathsf{S}}_arepsilon}(lpha,eta)$

GeomLoss: a new, super-fast GPU implementation

Leverages the KeOps library [Charlier, F., Glaunès, 2018]:

\implies pip install pykeops \Leftarrow

Gaussian dot product in 3D (RTX 2080 GPU)

Number of samples per measure

GeomLoss: a new, super-fast GPU implementation

Our website: www.kernel-operations.io/geomloss

\implies pip install geomloss \Leftarrow

Conclusion

The three regimes of Optimal Transport:

The three regimes of Optimal Transport:

- α , β live in **dimension 1**
 - \Longrightarrow Simple sorting problem
 - \implies Quicksort in $O(N \log N)$.

The three regimes of Optimal Transport:

- α , β live in **dimension 1**
 - \Longrightarrow Simple sorting problem
 - \implies Quicksort in $O(N \log N)$.

• α , β live in dimension 10+ $\implies C(\mathbf{x}_i, y_j)$ has very little structure \implies Compute all pairs in $\ge O(N^2)$.

The three regimes of Optimal Transport:

- α , β live in **dimension 1**
 - \Longrightarrow Simple sorting problem
 - \implies Quicksort in $O(N \log N)$.
- α , β have a **small** intrinsic **dimension**

• α , β live in dimension 10+ $\implies C(\mathbf{x}_i, y_j)$ has very little structure \implies Compute all pairs in $\ge O(N^2)$. The three regimes of Optimal Transport:

- α , β live in **dimension** 1
 - \Longrightarrow Simple sorting problem
 - \implies Quicksort in $O(N \log N)$.
- α , β have a **small** intrinsic **dimension** \implies Rely on multiscale strategies

• α , β live in dimension 10+ $\implies C(\mathbf{x}_i, y_j)$ has very little structure \implies Compute all pairs in $\ge O(N^2)$. The three regimes of Optimal Transport:

- α , β live in **dimension** 1
 - \Longrightarrow Simple sorting problem
 - \implies Quicksort in $O(N \log N)$.
- α , β have a **small** intrinsic **dimension**
 - \Longrightarrow Rely on multiscale strategies
 - \implies Multiscale Sinkhorn in $O(N \log N)$ on the GPU.
- α, β live in dimension 10+
 - \implies C($\mathbf{x}_i, \mathbf{y}_j$) has very little structure
 - \implies Compute all pairs in $\ge O(N^2)$.
The three regimes of Optimal Transport:

- α , β live in **dimension** 1
 - \Longrightarrow Simple sorting problem
 - \implies Quicksort in $O(N \log N)$.
- α , β have a **small** intrinsic **dimension**
 - \Longrightarrow Rely on multiscale strategies
 - \implies Multiscale Sinkhorn in $O(N \log N)$ on the GPU.
- α, β live in dimension 10+
 - \implies C($\mathbf{x}_i, \mathbf{y}_j$) has very little structure
 - \implies Compute all pairs in $\ge O(N^2)$.

 \Longrightarrow Multiscale Sinkhorn algorithm \simeq Multi-dimensional Quicksort.

For **users**: reliable, efficient python toolboxes:

- Fluid mechanics: github.com/sd-ot/pysdot
- Machine Learning: pot.readthedocs.io
- Graphics, large-scale ML:

www.kernel-operations.io/geomloss

For **users**: reliable, efficient python toolboxes:

- Fluid mechanics: github.com/sd-ot/pysdot
- Machine Learning: pot.readthedocs.io
- Graphics, large-scale ML:

www.kernel-operations.io/geomloss

For **us**: new interesting questions:

- How should we quantify the **convergence** of ε -scaling?
- Link between S_{ε} and a **blurred Wasserstein** distance?

Thank you for your attention.

Any questions ?

Iteration 1

First setting: processing of point clouds

- + φ is \mathbf{rigid} or affine
- Occlusions
- Outliers

From the documentation of the Point Cloud Library.

Second setting: medical imaging

From Marc Niethammer's Quicksilver slides.

- φ is a spline or a **diffeomorphism**
- Ill-posed problem
- Some occlusions

Wasserstein Auto-Encoders, Tolstikhin et al., 2018.

- + φ is a neural network
- Very weak regularization
- High-dimensional space

- + φ is a neural network
- Very weak regularization
- High-dimensional space

Wasserstein Auto-Encoders, Tolstikhin et al., 2018.

Which **Loss** function should we use?

$$Loss(\alpha, \beta) = \max_{f \in B} \langle \alpha - \beta, f \rangle,$$

look for $\theta^* = \arg \min_{\theta} \max_{f \in B} \langle \alpha(\theta) - \beta, f \rangle$

$$\mathsf{Loss}(\alpha,\beta) = \max_{f \in B} \langle \alpha - \beta, f \rangle,$$

look for $\theta^* = \arg\min_{\theta} \max_{f \in B} \langle \alpha(\theta) - \beta, f \rangle$

•
$$B = \{ \|f\|_{\infty} \leq 1 \} \implies \text{Loss} = \text{TV norm:}$$

- zero geometry
- too many test functions

$$Loss(\alpha, \beta) = \max_{f \in B} \langle \alpha - \beta, f \rangle,$$

look for $\theta^* = \arg\min_{\theta} \max_{f \in B} \langle \alpha(\theta) - \beta, f \rangle$

•
$$B = \{ \|f\|_{\infty} \leq 1 \} \implies \text{Loss} = \text{TV norm:}$$

- zero geometry
- too many test functions
- $B = \{ \|f\|_2^2 + \|\nabla f\|_2^2 + \dots \leq 1 \} \Longrightarrow$ Loss = kernel norm:
 - may saturate at infinity
 - screening artifacts

$$Loss(\alpha, \beta) = \max_{f \in B} \langle \alpha - \beta, f \rangle,$$

look for $\theta^* = \arg \min_{\theta} \max_{f \in B} \langle \alpha(\theta) - \beta, f \rangle$

• $B = \{ f \text{ is } 1 \text{-Lipschitz} \} \implies \text{Loss} = \text{Wasserstein-1 (OT}_0):$

$$Loss(\alpha, \beta) = \max_{f \in B} \langle \alpha - \beta, f \rangle,$$

look for $\theta^* = \arg \min_{\theta} \max_{f \in B} \langle \alpha(\theta) - \beta, f \rangle$

- $B = \{ f \text{ is } 1 \text{-Lipschitz} \} \implies \text{Loss} = \text{Wasserstein-1 (OT}_0):$
 - + S $_{\varepsilon}$ is nearly as efficient as a closed formula

$$Loss(\alpha, \beta) = \max_{f \in B} \langle \alpha - \beta, f \rangle,$$

look for $\theta^* = \arg\min_{\theta} \max_{f \in B} \langle \alpha(\theta) - \beta, f \rangle$

- $B = \{ f \text{ is 1-Lipschitz} \} \implies \text{Loss} = \text{Wasserstein-1 (OT_0)}:$
 - + S $_{\varepsilon}$ is nearly as efficient as a closed formula
 - relevant in low dimensions
 - useless in ($\mathbb{R}^{512 \times 512}, \|\cdot\|_2$): the ground cost makes no sense

$$Loss(\alpha, \beta) = \max_{f \in B} \langle \alpha - \beta, f \rangle,$$

ook for $\theta^* = \arg \min_{\theta} \max_{f \in B} \langle \alpha(\theta) - \beta, f \rangle$

- $B = \{f \text{ is } 1 \text{-Lipschitz} \} \implies \text{Loss} = \text{Wasserstein-1 (OT}_0):$
 - + S $_{\varepsilon}$ is nearly as efficient as a closed formula
 - relevant in low dimensions
 - useless in $(\mathbb{R}^{512 \times 512}, \|\cdot\|_2)$: the ground cost makes no sense
- $B \simeq \{ f \text{ is 1-Lipschitz } \} \bigcap \{ f \text{ is a CNN } \}$ $\implies \text{Loss} = \text{Wasserstein GAN }:$

$$Loss(\alpha, \beta) = \max_{f \in B} \langle \alpha - \beta, f \rangle,$$

ook for $\theta^* = \arg \min_{\theta} \max_{f \in B} \langle \alpha(\theta) - \beta, f \rangle$

- $B = \{f \text{ is } 1 \text{-Lipschitz} \} \implies \text{Loss} = \text{Wasserstein-1 (OT}_0):$
 - + S $_{\varepsilon}$ is nearly as efficient as a closed formula
 - relevant in low dimensions
 - useless in $(\mathbb{R}^{512 \times 512}, \|\cdot\|_2)$: the ground cost makes no sense
- $B \simeq \{ f \text{ is } 1 \text{-Lipschitz} \} \bigcap \{ f \text{ is a CNN} \}$

 \implies Loss = Wasserstein GAN :

• use perceptually sensible test functions

$$Loss(\alpha, \beta) = \max_{f \in B} \langle \alpha - \beta, f \rangle,$$

ook for $\theta^* = \arg \min_{\theta} \max_{f \in B} \langle \alpha(\theta) - \beta, f \rangle$

- $B = \{f \text{ is } 1 \text{-Lipschitz} \} \implies \text{Loss} = \text{Wasserstein-1 (OT}_0):$
 - + S $_{\varepsilon}$ is nearly as efficient as a closed formula
 - relevant in low dimensions
 - useless in ($\mathbb{R}^{512\times512},\|\cdot\|_2$): the ground cost makes no sense
- $B \simeq \{f \text{ is } 1\text{-Lipschitz }\} \bigcap \{f \text{ is a CNN }\}$

 \implies Loss = Wasserstein GAN :

- use perceptually sensible test functions
- no simple formula: use gradient ascent

$$Loss(\alpha, \beta) = \max_{f \in B} \langle \alpha - \beta, f \rangle,$$

ook for $\theta^* = \arg\min_{\theta} \max_{f \in B} \langle \alpha(\theta) - \beta, f \rangle$

- $B = \{f \text{ is } 1 \text{-Lipschitz} \} \implies \text{Loss} = \text{Wasserstein-1 (OT}_0):$
 - + S $_{\varepsilon}$ is nearly as efficient as a closed formula
 - relevant in low dimensions
 - useless in ($\mathbb{R}^{512\times512},\|\cdot\|_2$): the ground cost makes no sense
- $B \simeq \{ f \text{ is } 1 \text{-Lipschitz} \} \bigcap \{ f \text{ is a CNN} \}$

 \implies Loss = Wasserstein GAN :

- use **perceptually sensible** test functions
- no simple formula: use gradient ascent
- can we provide relevant **insights** to the ML community?

Our papers:

Global divergences between measures: from Hausdorff distance to
 Optimal Transport, F., Trouvé, 2018

Our papers:

- Global divergences between measures: from Hausdorff distance to
 Optimal Transport, F., Trouvé, 2018
- Sinkhorn entropies and divergences,
 - F., Séjourné, Vialard, Amari, Trouvé, Peyré, 2018
Our papers:

- Global divergences between measures: from Hausdorff distance to Optimal Transport, F., Trouvé, 2018
- Sinkhorn entropies and divergences,
 F., Séjourné, Vialard, Amari, Trouvé, Peyré, 2018
- Optimal Transport for diffeomorphic registration, F., Charlier, Vialard, Peyré, 2017

Charlier, B., Feydy, J., and Glaunès, J. (2018). Kernel operations on the gpu, with autodiff, without memory overflows. http://www.kernel-operations.io. Accessed: 2019-01-20.

Chizat, L., Peyré, G., Schmitzer, B., and Vialard, F.-X. (2018).
 Unbalanced optimal transport: Dynamic and kantorovich formulations.

Journal of Functional Analysis, 274(11):3090–3123.

References ii

Genevay, A., Peyre, G., and Cuturi, M. (2018). Learning generative models with sinkhorn divergences. In Storkey, A. and Perez-Cruz, F., editors, Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, volume 84 of Proceedings of Machine Learning Research, pages 1608–1617. PMLR.

Kaltenmark, I., Charlier, B., and Charon, N. (2017).
 A general framework for curve and surface comparison and registration with oriented varifolds.

In Computer Vision and Pattern Recognition (CVPR).

References iii

 Kosowsky, J. and Yuille, A. L. (1994).
 The invisible hand algorithm: Solving the assignment problem with statistical physics. Neural networks, 7(3):477–490.
 Ramdas, A., Trillos, N. G., and Cuturi, M. (2017). On wasserstein two-sample testing and related families of nonparametric tests.

Entropy, 19(2).

Salimans, T., Zhang, H., Radford, A., and Metaxas, D. (2018). Improving GANs using optimal transport. arXiv preprint arXiv:1803.05573.

- Sanjabi, M., Ba, J., Razaviyayn, M., and Lee, J. D. (2018).
 On the convergence and robustness of training GANs with regularized optimal transport.
 arXiv preprint arXiv:1802.08249.
 - Schmitzer, B. (2016).

Stabilized sparse scaling algorithms for entropy regularized transport problems.

arXiv preprint arXiv:1610.06519.