Optimal transport: mature tools and open problems

Jean Feydy
HeKA team, Inria Paris
Inserm, Université Paris-Cité

14th of June, 2022
Algorithmic challenges for large-scale problems
University of Göttingen
Who am I?

Background in **mathematics** and **data sciences**:

- **2014–2015** M2 mathematics, vision, learning at ENS Cachan.
- **2016–2019** PhD thesis in **medical imaging** with Alain Trouvé at ENS Cachan.
- **2019–2021** **Geometric deep learning** with Michael Bronstein at Imperial College.
- **2021+** **Medical data analysis** in the HeKA INRIA team (Paris).

Close ties with **healthcare**:

- **2015** Image denoising with **Siemens Healthcare** in Princeton.
- **2019+** MasterClass AI–Imaging, for **radiology interns** in the University of Paris.
- **2020+** Colloquium on **Medical imaging in the AI era** at the Paris Brain Institute.
My main motivation: speeding up core computations for healthcare

Computational anatomy. 3D medical scans are orders of magnitude heavier than natural 2D images:

- 100k triangles to represent a brain surface.
- \(512 \times 512 \times 512 \approx 130\text{M} \) voxels for a typical 3D image.

Public health. Over the last decade, medical datasets have blown up:

- Clinical trials: \textbf{1k patients}, controlled environment.
- UK Biobank: \textbf{500k people}, curated data.
- French Health Data Hub: \textbf{70M people}, full social security data since \(\sim\)2000.

Medical doctors, pharmacists and governments need scalable methods.
Target. Scale up models that combine medical **expertise** with modern **datasets**.

Context. The advent of **Graphics Processing Units (GPU)**:

- Incredible **value for money**:

 $1000\text{€} \approx 1000\text{ cores} \approx 10^{12} \text{ operations/s}.$

- **Bottleneck**: constraints on **register** usage.

“User-friendly” Python ecosystem, consolidated around a **small number of key operations**.

7,000 cores in a single GPU.
My project: a long-term investment in the foundations of our field

Solution. Expand the standard toolbox in data sciences to deal with the challenges of the healthcare industry.

Ease the development of advanced models, without compromising on numerical performance.

Since 2016, I’ve been working on speeding up:

- Geometric **machine learning**: K-Nearest Neighbors, kernel methods.
- Geometric **statistics**: Gaussian processes, Maximum Mean Discrepancies.
- Geometric **deep learning**: point convolutions, attention layers.
- **Survival** analysis: CoxPH solvers, WCE features.
- **Optimal transport**: our focus today!
1. What is Optimal Transport, and **why does it matter?**

2. **Computational** advances.

3. How do people use OT **today**?

4. **Open** problems.
Optimal transport?
Optimal transport (OT) generalizes sorting to spaces of dimension $D > 1$

If $A = (x_1, \ldots, x_N)$ and $B = (y_1, \ldots, y_N)$ are two clouds of N points in \mathbb{R}^D, we define:

$$OT(A, B) = \min_{\sigma \in S_N} \frac{1}{2N} \sum_{i=1}^{N} \| x_i - y_{\sigma(i)} \|^2$$

Generalizes sorting to metric spaces.

Linear problem on the permutation matrix P:

$$OT(A, B) = \min_{P \in \mathbb{R}^{N \times N}} \frac{1}{2N} \sum_{i,j=1}^{N} P_{i,j} \cdot \| x_i - y_j \|^2 ,$$

s.t. $P_{i,j} \geq 0$ \quad $\sum_j P_{i,j} = 1$ \quad $\sum_i P_{i,j} = 1$.

Each source point is transported onto the target.

assignment $\sigma : [1, 5] \rightarrow [1, 5]$
Alternatively, we understand OT as:

- Nearest neighbor **projection** + **incompressibility** constraint.
- Fundamental example of **linear optimization** over the transport plan $P_{i,j}$.

This theory induces two main quantities:

- The transport plan $P_{i,j}$ is the optimal mapping $x_i \mapsto y_{\sigma(i)}$.
- The “Wasserstein” distance $\sqrt{\text{OT}(A, B)}$.
The optimal transport plan

Before

After
The Wasserstein distance $\sqrt{\text{OT}}(A, B)$ is:

- **Symmetric**: $\text{OT}(A, B) = \text{OT}(B, A)$.
- **Positive**: $\text{OT}(A, B) \geq 0$.
- **Definite**: $\text{OT}(A, B) = 0 \iff A = B$.
- **Translation-aware**: $\text{OT}(A, \text{Translate}_{\vec{v}}(A)) = \frac{1}{2} \| \vec{v} \|^2$.

More generally, OT retrieves the unique gradient of a convex function $T = \nabla \phi$ that maps A onto B:

In dimension 1, $$(x_i - x_j) \cdot (y_{\sigma(i)} - y_{\sigma(j)}) \geq 0$$

In dimension D, $$\langle x_i - x_j, T(x_i) - T(x_j) \rangle_{\mathbb{R}^D} \geq 0$$

\implies Appealing generalization of an increasing mapping.
OT induces a geometry-aware distance between probability distributions

Gauss map $\mathcal{N} : (m, \sigma) \in \mathbb{R} \times \mathbb{R}_{\geq 0} \mapsto \mathcal{N}(m, \sigma) \in \mathbb{P}(\mathbb{R})$.

If the space of **probability distributions** $\mathbb{P}(\mathbb{R})$ is endowed with a given metric, what is the “pull-back” geometry on the space of **parameters** (m, σ)?

Fisher-Rao $(\simeq$ relative entropy) on $\mathcal{N}(m, \sigma)$

\rightarrow Hyperbolic Poincaré metric on (m, σ).

OT on $\mathcal{N}(m, \sigma)$

\rightarrow Flat Euclidean metric on (m, σ).
Geometric solutions to least square problems [AC11]

Barycenter $A^* = \arg\min_A \sum_{i=1}^{4} \lambda_i \text{Loss}(A, B_i)$.

Euclidean barycenters.
\[
\text{Loss}(A, B) = \|A - B\|_2^2
\]

Wasserstein barycenters.
\[
\text{Loss}(A, B) = OT(A, B)
\]
How should we solve the OT problem?
Flash-back: the primal OT problem

If \(A = (x_1, \ldots, x_N) \) and \(B = (y_1, \ldots, y_N) \) are two clouds of \(N \) points in \(\mathbb{R}^D \), we define:

\[
\text{OT}(A, B) = \min_{\sigma \in S_N} \frac{1}{2N} \sum_{i=1}^{N} \| x_i - y_{\sigma(i)} \|^2
\]

Generalizes sorting to metric spaces.

Linear problem on the permutation matrix \(P \):

\[
\text{OT}(A, B) = \min_{P \in \mathbb{R}^{N \times N}} \frac{1}{2N} \sum_{i,j=1}^{N} P_{i,j} \cdot \| x_i - y_j \|^2,
\]

s.t. \(P_{i,j} \geq 0 \)

\[
\sum_j P_{i,j} = 1 \quad \text{and} \quad \sum_i P_{i,j} = 1.
\]

Each source point... is transported onto the target.

assignment \(\sigma : [1, 5] \rightarrow [1, 5] \)
A fundamental problem in applied mathematics

Key dates for discrete optimal transport with N points:

- [Kan42]: **Dual** problem of Kantorovitch.
- [Kuh55]: **Hungarian methods** in $O(N^3)$.
- [Ber79]: **Auction algorithm** in $O(N^2)$.
- [KY94]: **SoftAssign** = Sinkhorn + simulated annealing, in $O(N^2)$.
- [GRL+98, CR00]: **Robust Point Matching** = Sinkhorn as a loss.
- [Cut13]: Start of the **GPU era**.
- [Mér11, Lév15, Sch19]: **multi-scale** solvers in $O(N \log N)$.

- **Solution**, today: **Multiscale Sinkhorn algorithm, on the GPU**.

 \Rightarrow Generalized **QuickSort** algorithm.
Scaling up optimal transport to anatomical data

Progresses of the last decade add up to a $\times 100 - \times 1000$ acceleration:

Sinkhorn GPU $\times 10 \rightarrow$ + KeOps $\times 10 \rightarrow$ + Annealing $\times 10 \rightarrow$ + Multi-scale

With a precision of 1%, on a modern gaming GPU:

```
pip install geomloss
```

modern GPU (1 000 €) \Rightarrow 10k points in 30-50ms

100k points in 100-200ms
How do people use OT in 2022?
1. Physics and simulation of Partial Differential Equations

Since the 1990s, OT is an essential tool to deal with flows:

- Fundamental models have an **appealing form** when seen through the OT lense: the incompressible **Euler flow** is a **geodesic** trajectory, **heat** diffusion is a gradient **descent**…

- This framework allows mathematicians to design and study new models **effectively**.

- **Implementations** in 2D and 3D are now becoming mature.

- Lots of cool simulations of **crowds, water** or the **early universe**!

Pointers: MoKaPlan Inria team, Bruno Lévy, Quentin Mérigot, Filippo Santambrogio, Yann Brenier, Felix Otto…
2. A typical example in shape analysis: lung registration “Exhale – Inhale”

Complex deformations, high *resolution* (50k–300k points), high *accuracy* (< 1mm).
State-of-the-art networks – and their limitations

Point neural nets, **in practice:**
- Compute **descriptors** at all scales.
- **Match** them using geometric layers.
- Train on **synthetic** deformations.

Strengths and weaknesses:
- Good at **pairing** branches.
- Hard to train to high **accuracy**.

Multi-scale convolutional point neural network.

⟹ **Complementary** to OT.
Three-steps registration

1. Affine-RobOT pre-alignment.
 - Deep prediction network.
 - Smooth deformation model.
2. Spline-RobOT post-processing.

This **pragmatic** method:

- Is **easy to train** on synthetic data.
- Scales up to high-resolution: 100k points in 1s.
- Excellent results: **KITTI** (outdoors scans) and **DirLab** (lungs).

Accurate point cloud registration with robust optimal transport,
Three-steps registration

0. Input data
1. Pre-alignment

Zoom!
2. Deep registration
3. Fine-tuning
3. An intriguing tool in machine learning

OT **lifts to probability distributions** the geometry of the sample space $||x_i - y_j||$.

This is relevant at the intersection between geometry and statistics in order to:

- Design **2-sample tests**: do these two samples come from the same distribution?
- Quantify the **discrepancy** between a synthetic sample and the data distribution.
- Study the convergence of **particle-based optimization** schemes, from simple neural networks to MCMC samplers.

Pointers: Python Optimal Transport (Flamary, Courty et al.), Computational Optimal Transport (Peyré and Cuturi), Jonathan Weed, Justin Solomon, Philippe Rigollet, Lenaïc Chizat, Anna Korba…
Open problems
1. Learning in the space of probability distributions

Can we generalize standard ML algorithms for:

- population visualization
- regression
- classification

from vector spaces to a (non-linear) space of probability distributions?

Thanks to fast and reliable solvers for the Wasserstein barycenter problem, this now seems realistic in dimensions 2 and 3, with applications to PDE solvers and shape analysis.
2. Going beyond the (squared) Euclidean distance

Most results and heuristics only hold for simple cost functions ($\|x_i - y_j\|$, $\|x_i - y_j\|^2$, etc.):

- What about concave costs, e.g. $\sqrt{\|x_i - y_j\|}$?

- What about distances that cannot be written in closed form, e.g. geodesic distances on graphs?

- Can we guarantee (some) smoothness for the transport map while keeping super-fast solvers?
Standard OT is hardly relevant when dealing with high-dimensional data samples (collections of images, text documents, electronic health records…).

This is a direct consequence of the curse of dimensionality: OT cannot extract information out of a meaningless matrix of distances $\|x_i - y_j\|$.

However, we can still build upon the geometric ideas of OT theory to design interesting, domain-specific distances between distributions. This is the key idea behind “Wasserstein” GANs, metric learning… Can we build other fruitful analogies?
My job: pave the way for a new generation of researchers

1. **Secure** a permanent position.

2. Shore up the **GPU foundations** of the field.
 → KeOps v2.0 released in March 2022, now seamless to install.

3. **Re-write GeomLoss** with a better interface and full support for 2D/3D images.
 → WIP with the Python Optimal Transport devs, first release very soon.

4. Maintain an **open benchmarking platform** for the community,
 following the example of www.ann-benchmarks.com for nearest neighbor search.
 → WIP, release this Fall.
Conclusion
Genuine teamwork

Alain Trouvé Thibault Séjourné F.-X. Vialard Gabriel Peyré

Benjamin Charlier Joan Glaunès Marc Niethammer Shen Zhengyang
Key points

• Optimal Transport = generalized sorting:
 → Super-fast solvers on simple domains (esp. 2D/3D spaces).
 → Simple registration for shapes that are close to each other.
 → Fundamental tool at the intersection of geometry and statistics.
 → Open geometric questions with a genuine application.

• GPUs are more versatile than you think.
 → Ongoing work to provide fast GPU backends to researchers,
 going beyond what Google and Facebook are ready to pay for.
Documentation and tutorials are available online

→ www.kernel-operations.io ←

www.jeanfeydy.com/geometric_data_analysis.pdf
References
M. Agueh and G. Carlier.

Barycenters in the Wasserstein space.

Dimitri P Bertsekas.

A distributed algorithm for the assignment problem.

Haili Chui and Anand Rangarajan.

A new algorithm for non-rigid point matching.

Marco Cuturi.

Sinkhorn distances: Lightspeed computation of optimal transport.

Steven Gold, Anand Rangarajan, Chien-Ping Lu, Suguna Pappu, and Eric Mjolsness.

New algorithms for 2d and 3d point matching: Pose estimation and correspondence.

Leonid V Kantorovich.

On the translocation of masses.

Harold W Kuhn.

The Hungarian method for the assignment problem.

Jeffrey J Kosowsky and Alan L Yuille.

The invisible hand algorithm: Solving the assignment problem with statistical physics.

Bruno Lévy.

An numerical algorithm for l2 semi-discrete optimal transport in 3d.

Quentin Mérigot.

A multiscale approach to optimal transport.

Bernhard Schmitzer.

Stabilized sparse scaling algorithms for entropy regularized transport problems.