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Who am I?

Background inmathematics and data sciences:
2012–2016 ENS Paris, mathematics.

2014–2015 M2mathematics, vision, learning at ENS Cachan.

2016–2019 PhD thesis inmedical imagingwith Alain Trouvé at ENS Cachan.

2019–2021 Geometric deep learningwith Michael Bronstein at Imperial College.

2021+ Medical data analysis in the HeKA INRIA team (Paris).

Close ties with healthcare:
2015 Image denoising with Siemens Healthcare in Princeton.

2019+ MasterClass AI–Imaging, for radiology interns in the University of Paris.

2020+ Colloquium onMedical imaging in the AI era at the Paris Brain Institute.
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Mymainmotivation: speeding up core computations for healthcare

Computational anatomy. 3Dmedical scans are orders of magnitude heavier than
natural 2D images:

• 100k triangles to represent a brain surface.
• 512x512x512 ≃ 130M voxels for a typical 3D image.

Public health. Over the last decade, medical datasets have blown up:

• Clinical trials: 1k patients, controlled environment.
• UK Biobank: 500k people, curated data.
• French Health Data Hub: 70M people, full social security data since ~2000.

Medical doctors, pharmacists and governments need scalable methods.
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A field that is moving fast

Target. Scale upmodels that combine
medical expertisewith modern datasets.

Context. The advent of Graphics Processing Units (GPU):

• Incredible value for money:
1 000€ ≃ 1 000 cores ≃ 1012 operations/s.

• Bottleneck: constraints on register usage.

“User-friendly” Python ecosystem, consolidated around
a small number of key operations.

7,000 cores
in a single GPU.
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The KeOps library: efficient support for symbolic matrices

F( xi , yj )

Symbolic matrix
Formula + data

• Distances d(xi,yj).
• Kernel k(xi,yj).
• Numerous
transforms.

Solution. KeOps – www.kernel-operations.io:

• For PyTorch, NumPy, Matlab and R, on CPU and GPU.
• Automatic differentiation.
• Just-in-time compilation of optimized C++ schemes,
triggered for every new reduction: sum, min, etc.

If the formula “F” is simple (⩽ 100 arithmetic operations):
“100k × 100k” computation → 10ms – 100ms,
“1M × 1M” computation → 1s – 10s.

Hardware ceiling of 1012 operations/s.
×10 to ×100 speed-up vs standard GPU implementations

for a wide range of problems.
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A long-term investment in the foundations of our field

Since 2016, I’ve been working on speeding up:

• Geometricmachine learning: K-Nearest Neighbors, kernel methods.

• Geometric statistics: Gaussian processes, MaximumMean Discrepancies.

• Geometric deep learning: point convolutions, attention layers.

• Survival analysis: CoxPH solvers, time-varying features.

• Optimal transport: our focus today!
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Today’s talk

1. Mymotivations to study discrete optimal transport.

2. Computational advances.

3. How do people use OT today?

4. Open problems.
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Optimal transport?



Optimal transport (OT) generalizes sorting to spaces of dimension D > 1

If A = (x1, … , xN) and B = (y1, … , yN)
are two clouds of N points in ℝD, we define:

OT(A,B) = min
𝜎∈𝒮N

1
2N

N

∑
i =1

‖ x𝑖 − y𝜎(𝑖)‖
2

Generalizes sorting to metric spaces.
Linear problem on the permutation matrix P:

OT(A,B) = min
P∈ℝN×N

1
2N

N

∑
i, j =1

P𝑖,𝑗 ⋅ ‖ x𝑖 − y𝑗‖
2 ,

s.t. P𝑖,𝑗 ⩾ 0 ∑𝑗P𝑖,𝑗 = 1⏟⏟⏟⏟⏟
Each source point…

∑𝑖P𝑖,𝑗 = 1 .⏟⏟⏟⏟⏟
is transported onto the target.

x1
x2
x3
x4

x5

y3
y5
y2

y4

y1

assignment
𝜎 ∶ [[1, 5]] →[[1, 5]]
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Practical use

Alternatively, we understand OT as:

• Nearest neighbor projection + incompressibility constraint.

• Fundamental example of linear optimization over the transport plan P𝑖,𝑗.

This theory induces twomain quantities:

• The transport plan P𝑖,𝑗 ≃ the optimal mapping 𝑥𝑖 ↦ 𝑦𝜎(𝑖).

• The “Wasserstein” distance √OT(A,B).

9



The optimal transport plan

Before After 10



The optimal transport plan

Before After 10



The optimal transport plan

Before After 10



The optimal transport plan

Before After 10



Key properties of the OT distance

The Wasserstein distance
√
OT(A,B) is:

• Symmetric: OT(A,B) = OT(B, A) .

• Positive: OT(A,B) ⩾ 0 .

• Definite: OT(A,B) = 0 ⟺ A = B .

• Translation-aware: OT(A, Translate ⃗𝑣(A) ) = 1
2‖ ⃗𝑣 ‖2 .

• More generally, OT retrieves the unique gradient of a convex function
T = ∇𝜙 that maps A onto B:

In dimension 1, (xi − xj) ⋅ (y𝜎(i) − y𝜎(j)) ⩾ 0

In dimension D, ⟨ xi − xj , T(xi) − T(xj) ⟩ℝD ⩾ 0 .

⟹ Appealing generalization of an increasingmapping.
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OT induces a geometry-aware distance between probability distributions [PC18]

Gaussmap 𝒩 ∶ (𝑚, 𝜎) ∈ ℝ × ℝ⩾0 ↦ 𝒩(𝑚, 𝜎) ∈ ℙ(ℝ).

If the space of probability distributions ℙ(ℝ) is endowed with a given metric,
what is the “pull-back” geometry on the space of parameters (𝑚, 𝜎)?

Fisher-Rao (≃ relative entropy) on 𝒩(𝑚, 𝜎)
→ Hyperbolic Poincarémetric on (𝑚, 𝜎).

OT on 𝒩(𝑚, 𝜎)
→ Flat Euclideanmetric on (𝑚, 𝜎).
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Geometric solutions to least square problems [AC11]

Barycenter A∗ = arg min
A

4
∑
𝑖=1

𝜆𝑖 Loss( A , B𝑖 ) .

Euclidean barycenters.
Loss(A,B) = ‖A − B‖2

𝐿2

Wasserstein barycenters.
Loss(A,B) = OT(A,B) 13



How should we solve the OT problem?



Flash-back: the primal OT problem

If A = (x1, … , xN) and B = (y1, … , yN)
are two clouds of N points in ℝD, we define:

OT(A,B) = min
𝜎∈𝒮N

1
2N

N

∑
i =1

‖ x𝑖 − y𝜎(𝑖)‖
2

Generalizes sorting to metric spaces.
Linear problem on the permutation matrix P:

OT(A,B) = min
P∈ℝN×N

1
2N

N

∑
i, j =1

P𝑖,𝑗 ⋅ ‖ x𝑖 − y𝑗‖
2 ,

s.t. P𝑖,𝑗 ⩾ 0 ∑𝑗P𝑖,𝑗 = 1⏟⏟⏟⏟⏟
Each source point…

∑𝑖P𝑖,𝑗 = 1 .⏟⏟⏟⏟⏟
is transported onto the target.

x1
x2
x3
x4

x5

y3
y5
y2

y4

y1

assignment
𝜎 ∶ [[1, 5]] →[[1, 5]]
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A fundamental problem in appliedmathematics

Key dates for discrete optimal transport with N points:

• [Kan42]: Dual problem of Kantorovitch.
• [Kuh55]: Hungarian methods in 𝑂(N3).
• [Ber79]: Auction algorithm in 𝑂(N2).
• [KY94]: SoftAssign = Sinkhorn + simulated annealing, in 𝑂(N2).
• [GRL+98, CR00]: Robust Point Matching = Sinkhorn as a loss.
• [Cut13]: Start of the GPU era.
• [Mér11, Lév15, Sch19]: multi-scale solvers in 𝑂(N logN).

• Solution, today: Multiscale Sinkhorn algorithm, on the GPU.

⟹ GeneralizedQuickSort algorithm.
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Visualizing 𝐹, 𝐺 and the Brenier map ∇𝐹(𝑥𝑖) = − 1
𝛼𝑖

𝜕𝑥𝑖
OT(𝛼, 𝛽)

OT plan in 2D.
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Visualizing 𝐹, 𝐺 and the Brenier map ∇𝐹(𝑥𝑖) = − 1
𝛼𝑖

𝜕𝑥𝑖
OT(𝛼, 𝛽)

Iteration 0, blur 𝜎 = 20
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Visualizing 𝐹, 𝐺 and the Brenier map ∇𝐹(𝑥𝑖) = − 1
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Visualizing 𝐹, 𝐺 and the Brenier map ∇𝐹(𝑥𝑖) = − 1
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𝜕𝑥𝑖
OT(𝛼, 𝛽)

Iteration 7, blur 𝜎 = .01
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Scaling up optimal transport to anatomical data

Progresses of the last decade add up to a ×100 - ×1000 acceleration:

Sinkhorn GPU
×10
−−→ + KeOps

×10
−−→ + Annealing

×10
−−→ + Multi-scale

With a precision of 1%, on amodern gaming GPU:

pip install
geomloss

+
modern GPU
(1 000 €)

⟹

10k points in 30-50ms 100k points in 100-200ms
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How do people use OT in 2022?



1. Physics and simulation of Partial Differential Equations

Since the 1990s, OT is an essential tool to deal with flows:

• Fundamental models have an appealing formwhen seen through the OT lense:
the incompressible Euler flow is a geodesic trajectory,
heat diffusion is a gradient descent…

• This framework allows mathematicians to design and study newmodels effectively.

• Implementations in 2D and 3D are now becoming mature.

• Lots of cool simulations of crowds,water or the early universe!

Pointers: MoKaPlan Inria team, Bruno Lévy, Quentin Mérigot,
Filippo Santambrogio, Yann Brenier, Felix Otto…
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2. A typical example in shape analysis: lung registration “Exhale – Inhale”

Complex deformations, high resolution (50k–300k points), high accuracy (< 1mm). 21



State-of-the-art networks – and their limitations

N points, 3 or 4 channels

 N points, 64 channels

C points, 64 channels

C/4 points, 
128 channels

C/8 points, 
256 channels

C/32 points, 
256 channels

Target

L0

L1

L2

L3

L4

N points, 3 or 4 channels

 N points, 64 channels

C points, 64 channels

C/4 points, 
128 channels

C/8 points, 
256 channels

C/32 points, 
256 channels

Source

L0

L1

L2

L3

L4

PointPWC Block

PointPWC Block

PointPWC Block

Parameter θ

Multi-scale convolutional
point neural network.

Point neural nets, in practice:
• Compute descriptors at all scales.
• Match them using geometric layers.
• Train on synthetic deformations.

Strengths and weaknesses:
• Good at pairing branches.
• Hard to train to high accuracy.

⟹ Complementary to OT.
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Three-steps registration

xi
yj

θ

θ

1.    Affine-RobOT pre-alignment.

2.a. Deep prediction network.

2.b. Smooth deformation model.

3.    Spline-RobOT post-processing. Real source. Synthetic target.

Local deformation. Global deformation.
End-to-end
training on
synthetic 

pairs.

This pragmaticmethod:

• Is easy to train on synthetic data.
• Scales up to high-resolution: 100k points in 1s.
• Excellent results: KITTI (outdoors scans) and DirLab (lungs).

Accurate point cloud registration with robust optimal transport,
Shen, Feydy et al., NeurIPS 2021. 23



Three-steps registration
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3. An intriguing tool in machine learning

OT lifts to probability distributions the geometry of the sample space ‖𝑥𝑖 − 𝑦𝑗‖.

This is relevant at the intersection between geometry and statistics in order to:

• Design 2-sample tests : do these two samples come from the same distribution?
• Quantify the discrepancy between a synthetic sample and the data distribution.
• Study the convergence of particle-based optimization schemes,
from simple neural networks to MCMC samplers.

Pointers: Python Optimal Transport (Flamary, Courty et al.),
Computational Optimal Transport (Peyré and Cuturi),
Jonathan Weed, Justin Solomon, Philippe Rigollet, Lenaïc Chizat, Anna Korba…
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Open problems



1. Learning in the space of probability distributions

Can we generalize standard ML algorithms for:

• population visualization
• regression
• classification

from vector spaces to a (non-linear) space of probability distributions?

Thanks to fast and reliable solvers for the Wasserstein barycenter problem,
this now seems realistic in dimensions 2 and 3,

with applications to PDE solvers and shape analysis.
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2. Going beyond the (squared) Euclidean distance

Most results and heuristics only hold for simple cost functions (‖𝑥𝑖 − 𝑦𝑗‖, ‖𝑥𝑖 − 𝑦𝑗‖2, etc.):

• What about concave costs, e.g. √‖𝑥𝑖 − 𝑦𝑗‖?

• What about distances that cannot be written in closed form,
e.g. geodesic distances on graphs?

• Can we guarantee (some) smoothness for the transport map
while keeping super-fast solvers?
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3. OT as a source of inspiration in high-dimensional scenarios

Standard OT is hardly relevant when dealing with high-dimensional data samples
(collections of images, text documents, electronic health records…).

This is a direct consequence of the curse of dimensionality:
OT cannot extract information out of a meaningless

matrix of distances ‖𝑥𝑖 − 𝑦𝑗‖.

However, we can still build upon the geometric ideas of OT theory
to design interesting, domain-specific distances between distributions.

This is the key idea behind “Wasserstein” GANs, metric learning…
Can we build other fruitful analogies?
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My job: create tools for a new generation of researchers

1. Secure a permanent position.
→ Inria researcher since Dec. 2021.

2. Shore up the GPU foundations of the field.
→ KeOps v2.0 released in March 2022, now seamless to install.

3. Re-write GeomLosswith a better interface and full support for 2D/3D images.
→ WIP with the Python Optimal Transport devs.

4. Maintain an open benchmarking platform for the community,
following the example of www.ann-benchmarks.com for nearest neighbor search.
→ WIP.

29
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Conclusion



Genuine teamwork

Benjamin Charlier Joan Glaunès Thibault Séjourné F.-X. Vialard Gabriel Peyré

Alain Trouvé Marc Niethammer Shen Zhengyang Olga Mula Hieu Do
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Key points

• Optimal Transport = generalized sorting :
⟶ Super-fast solvers on simple domains (esp. 2D/3D spaces).
⟶ Simple registration for shapes that are close to each other.
⟶ Fundamental tool at the intersection of geometry and statistics.
⟶ Open geometric questions with a genuine application.

• GPUs are more versatile than you think.
⟶ Ongoing work to provide fast GPU backends to researchers,

going beyond what Google and Facebook are ready to pay for.
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Documentation and tutorials are available online

⟹ www.kernel-operations.io ⟸

www.jeanfeydy.com/geometric_data_analysis.pdf 32

www.kernel-operations.io
www.jeanfeydy.com/geometric_data_analysis.pdf
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