Optimal transport with 3D shapes

Jean Feydy
HeKA team, Inria Paris
Inserm, Université Paris-Cité

6th of December, 2023
G-Stats seminar
Epione Inria team, Inria Sophia Antipolis
Background in **mathematics** and **data sciences**:

- **2014–2015** M2 mathematics, vision, learning at ENS Cachan.
- **2016–2019** PhD thesis in **medical imaging** with Alain Trouvé at ENS Cachan.
- **2019–2021** **Geometric deep learning** with Michael Bronstein at Imperial College.
- **2021+** **Medical data analysis** in the HeKA INRIA team (Paris).
HeKA: a translational research team for public health

Hôpitaux
Inria Inserm
Universités
My main motivation

Develop **robust and efficient** software that **stimulates other researchers**:

1. Speed up **geometric machine learning** on GPUs:
 \[\implies\] **pyKeOps** library for distance and kernel matrices, 500k+ downloads.

2. Scale up **pharmacovigilance** to the full French population:
 \[\implies\] **survivalGPU**, a fast re-implementation of the R survival package.

3. Ease access to modern statistical **shape analysis**:
 \[\implies\] **GeomLoss**, truly scalable optimal transport in Python.
 \[\implies\] **scikit-shapes**, to be released soon.
Today’s talk – assuming that you would enjoy some applied maths

1. The **optimal transport** problem.
2. Efficient discrete **solvers**.
3. **Applications** and **open** problems.
Optimal transport?
Optimal transport (OT) generalizes sorting to spaces of dimension $D > 1$.

If $A = (x_1, \ldots, x_N)$ and $B = (y_1, \ldots, y_N)$ are two clouds of N points in \mathbb{R}^D, we define:

$$
\text{OT}(A, B) = \min_{\sigma \in S_N} \frac{1}{2N} \sum_{i=1}^{N} \| x_i - y_{\sigma(i)} \|^2
$$

Generalizes sorting to metric spaces. **Linear problem** on the permutation matrix P:

$$
\text{OT}(A, B) = \min_{P \in \mathbb{R}^{N \times N}} \frac{1}{2N} \sum_{i,j=1}^{N} P_{i,j} \cdot \| x_i - y_j \|^2,
$$

s.t. $P_{i,j} \geq 0$, $\sum_j P_{i,j} = 1$ \quad \sum_i P_{i,j} = 1$.

Each source point is transported onto the target.

Assignment $\sigma : [1, 5] \rightarrow [1, 5]$.
Practical use

Alternatively, we understand OT as:

- Nearest neighbor projection + incompressibility constraint.
- Fundamental example of linear optimization over the transport plan $P_{i,j}$.

This theory induces two main quantities:

- The transport plan $P_{i,j} \simeq$ the optimal mapping $x_i \mapsto y_{\sigma(i)}$.
- The “Wasserstein” distance $\sqrt{\text{OT}(A, B)}$.
The optimal transport plan

Before

After
The optimal transport plan

Before

After
The optimal transport plan
The optimal transport plan

Before

After
OT induces a geometry-aware distance between probability distributions [PC18]

Gauss map \(\mathcal{N} : (m, \sigma) \in \mathbb{R} \times [0, \infty) \mapsto \mathcal{N}(m, \sigma) \in \mathbb{P}(\mathbb{R}) \).

If the space of **probability distributions** \(\mathbb{P}(\mathbb{R}) \) is endowed with a given metric, what is the “pull-back” geometry on the space of **parameters** \((m, \sigma)\)?

Fisher-Rao (\(\simeq \) relative entropy) on \(\mathcal{N}(m, \sigma) \)
\[\rightarrow \] Hyperbolic **Poincaré** metric on \((m, \sigma)\).

OT on \(\mathcal{N}(m, \sigma) \)
\[\rightarrow \] Flat **Euclidean** metric on \((m, \sigma)\).
How should we solve the OT problem?
Duality: central planning with NM variables \simeq outsourcing with $N + M$ variables

$$\text{OT}(A, B) = \min_{\pi} \langle \pi, C \rangle, \quad \text{with} \quad C(x_i, y_j) = \frac{1}{p} \|x_i - y_j\|^p$$

\rightarrow Assignment

s.t. $\pi \succeq 0$, $\pi 1 = A$, $\pi^T 1 = B$

$$\sum_{i,j} \pi_{i,j} C(x_i, y_j)$$

Diagram of $\pi_{i,j}$ values with $\alpha_i \delta x_i$ and $\beta_i \delta y_i$.
Duality: central planning with NM variables \(\simeq\) outsourcing with \(N + M\) variables

\[
\text{OT}(A, B) = \min_{\pi} \langle \pi, C \rangle, \quad \text{with } C(x_i, y_j) = \frac{1}{p} \|x_i - y_j\|^p
\]

\[
\text{s.t. } \pi \geq 0, \quad \pi 1 = A, \quad \pi^T 1 = B
\]

\[
\sum_{i,j} \pi_{i,j} C(x_i, y_j)
\]

\[
\max_{f, g} \langle A, f \rangle + \langle B, g \rangle
\]

\[
\text{s.t. } f(x_i) + g(y_j) \leq C(x_i, y_j),
\]

\[
\sum_i A_i f_i + \sum_j B_j g_j
\]
Duality: central planning with NM variables \simeq outsourcing with N + M variables

$$OT(A, B) = \min_{\pi} \langle \pi, C \rangle, \text{ with } C(x_i, y_j) = \frac{1}{p} \|x_i - y_j\|^p$$

\rightarrow Assignment

$$\text{s.t. } \pi \geq 0, \quad \pi \mathbf{1} = A, \quad \pi^T \mathbf{1} = B$$

$$\sum_{i,j} \pi_{i,j} C(x_i, y_j)$$

$$= \max_{f, g} \langle A, f \rangle + \langle B, g \rangle$$

$s.t.$ $f(x_i) + g(y_j) \leq C(x_i, y_j)$,

$\sum_i A_i f_i + \sum_j B_j g_j$

\rightarrow FedEx
Being too greedy... doesn’t work!

\[\text{OT}(\alpha, \beta) = \max_{(f_i) \in \mathbb{R}^N} \sum_{i=1}^{N} \alpha_i f_i + \sum_{j=1}^{M} \beta_j g_j \]

s.t. \(\forall i, j, f_i + g_j \leq C(x_i, y_j) \)

Algorithm 3.1: Naive greedy algorithm

1. \(f_i, g_j \leftarrow 0_{\mathbb{R}^N}, 0_{\mathbb{R}^M} \)
2. repeat
3. \(f_i \leftarrow \min_{j=1}^{M} \left[C(x_i, y_j) - g_j \right] \)
4. \(g_j \leftarrow \min_{i=1}^{N} \left[C(x_i, y_j) - f_i \right] \)
5. until convergence.
6. return \(f_i, g_j \)
The auction algorithm: take it easy with a slackness $\varepsilon > 0$

$$OT(\alpha, \beta) = \max_{(f_i) \in \mathbb{R}^N_{+}} \left(\sum_{i=1}^{N} \alpha_i f_i + \sum_{j=1}^{M} \beta_j g_j \right)$$

s.t. $\forall i, j, f_i + g_j \leq C(x_i, y_j)$

Algorithm 3.2: Pseudo-auction algorithm

1. $f_i, g_j \leftarrow 0_{\mathbb{R}^N_{+}}, 0_{\mathbb{R}^M}$
2. repeat
3. $f_i \leftarrow \min_{j=1}^{M} \left[C(x_i, y_j) - g_j \right] - \varepsilon$
4. $g_j \leftarrow \min_{i=1}^{N} \left[C(x_i, y_j) - f_i \right]$
5. until $\forall i, \exists j, f_i + g_j \geq C(x_i, y_j) - \varepsilon$.
6. return f_i, g_j
The Sinkhorn algorithm: use a softmin, get a well-defined optimum

\[
\text{OT}(\alpha, \beta) = \max_{(f_i) \in \mathbb{R}^N, (g_j) \in \mathbb{R}^M} \sum_{i=1}^{N} \alpha_i f_i + \sum_{j=1}^{M} \beta_j g_j \\
\text{s.t. } \forall i, j, f_i + g_j \leq C(x_i, y_j)
\]

Algorithm 3.3: Sinkhorn or “soft-auction” algorithm

1. \(f_i, g_j \leftarrow 0_{\mathbb{R}^N}, 0_{\mathbb{R}^M}\)
2. repeat
3. \(f_i \leftarrow -\varepsilon \log \sum_{j=1}^{M} \beta_j \exp \frac{1}{\varepsilon} [g_j - C(x_i, y_j)]\)
4. \(g_j \leftarrow -\varepsilon \log \sum_{i=1}^{N} \alpha_i \exp \frac{1}{\varepsilon} [f_i - C(x_i, y_j)]\)
5. until convergence up to a set tolerance.
6. return \(f_i, g_j\)
The symmetric Sinkhorn algorithm: stay close to the diagonal if $A \simeq B$
Remark 1: a streamlined algorithm

One key operation – the soft, **weighted distance transform**:

\[
\forall i \in [1, N], \quad f(x_i) \leftarrow \min_{y \sim \beta} \left[C(x_i, y) - g(y) \right] = -\varepsilon \log \sum_{j=1}^{M} \beta_j \exp \left[\frac{1}{\varepsilon} \left(g_j - C(x_i, y_j) \right) \right].
\]

Similar to the chamfer distance transform, convolution with a Gaussian kernel…

Fast implementations with **pyKeOps**:

- If \(C(x_i, y_j) \) is a closed formula: **bruteforce** scales to \(N, M \approx 100k \) in 10ms on a GPU.

- If \(A \) and \(B \) have a low-dimensional support:
 use a clustering and **truncation** strategy to get a x10 speed-up.

- If \(A \) and \(B \) are supported on a 2D or 3D grid and \(C(x_i, y_j) = \frac{1}{2} \| x_i - y_j \|^2 \):
 use a **separable** distance transform to get a second x10 speed-up.

(N.B.: FFTs run into numerical accuracy issues.)
Remark 2: annealing works!

The **Auction/Sinkhorn** algorithms:

- Improve the dual cost by at least ε at each (early) step.
- Reach an ε-optimal solution with $(\max C) / \varepsilon$ steps.

Simple heuristic: run the optimization with **decreasing values** of ε.

ε-scaling

\[\begin{align*}
\varepsilon & \text{-scaling} \\
= & \text{simulated annealing} \\
= & \text{multiscale strategy} \\
= & \text{divide and conquer}
\end{align*} \]
Remark 3: the curse of dimensionality

In low dimension:
- \(\|x - y\| \) takes large and small values.
- The OT objective is **peaky** wrt. \(\pi \).
- \(\varepsilon \)-optimal solutions are **useful**.
- \(\text{OT}\)(discrete samples) \(\simeq \) \(\text{OT}\)(underlying distributions)

In high dimension:
- \(\|x - y\| \) gets closer to a constant.
- The OT objective is **flat** wrt. \(\pi \).
- \(\varepsilon \)-optimal solutions are **random**.
- \(\text{OT}\)(discrete samples) \(\neq \) \(\text{OT}\)(underlying distributions)
To recap 80+ years of work...

Key dates for discrete optimal transport with N points:

- [Kan42]: **Dual** problem of Kantorovitch.
- [Kuh55]: **Hungarian** methods in $O(N^3)$.
- [Ber79]: **Auction** algorithm in $O(N^2)$.
- [KY94]: **SoftAssign** = Sinkhorn + simulated annealing, in $O(N^2)$.
- [GRL+ 98, CR00]: **Robust Point Matching** = Sinkhorn as a loss.
- [Cut13]: Start of the **GPU era**.
- [Mér11, Lév15, Sch19]: **multi-scale** solvers in $O(N \log N)$.

- **Solution**, today: **Multiscale Sinkhorn algorithm, on the GPU**.

 \Rightarrow Generalized **QuickSort** algorithm.
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i$ \text{OT}(\alpha, \beta)$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i \text{OT}(\alpha, \beta)$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i \text{OT}(\alpha, \beta)$

Iteration 1, blur $\sigma = \sqrt{\varepsilon} = 2^{-1}$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i$ OT(α, β)

Iteration 2, blur $\sigma = \sqrt{\varepsilon} = 2^{-2}$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i \text{OT}(\alpha, \beta)$

Iteration 3, blur $\sigma = \sqrt{\varepsilon} = 2^{-3}$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i$ OT(α, β)

Iteration 4, blur $\sigma = \sqrt{\varepsilon} = 2^{-4}$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i$ OT(α, β)

Iteration 5, blur $\sigma = \sqrt{\varepsilon} = 2^{-5}$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i \text{OT}(\alpha, \beta)$

Iteration 6, blur $\sigma = \sqrt{\varepsilon} = 2^{-6}$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i \text{OT} (\alpha, \beta)$

Iteration 7, blur $\sigma = \sqrt{\varepsilon} = 0.01$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial_x x_i \mathcal{OT} (\alpha, \beta)$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i \text{OT}(\alpha, \beta)$

Iteration 1, blur $\sigma = 2^{-1}$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i \text{ OT}(\alpha, \beta)$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i^T \text{OT}(\alpha, \beta)$

Iteration 3, blur $\sigma = 2^{-3}$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i \text{OT}(\alpha, \beta)$

Iteration 4, blur $\sigma = 2^{-4}$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i \text{ OT}(\alpha, \beta)$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i \text{OT}(\alpha, \beta)$

Iteration 6, blur $\sigma = 2^{-6}$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i \text{OT}(\alpha, \beta)$

Iteration 7, blur $\sigma = .01$
Scaling up optimal transport to anatomical data

Progresses of the last decade add up to a $\times 100$ - $\times 1000$ acceleration:

Sinkhorn GPU $\xrightarrow{\times 10}$ + KeOps $\xrightarrow{\times 10}$ + Annealing $\xrightarrow{\times 10}$ + Multi-scale

With a precision of 1%, on a modern gaming GPU:

```
pip install geomloss
+ modern GPU
(1 000 €)
```

$10k$ points in $30-50ms$

$100k$ points in $100-200ms$
Applications
A typical example in anatomy: lung registration “Exhale – Inhale”

Complex deformations, high resolution (50k–300k points), high accuracy (< 1mm).
Point neural nets, **in practice:**
- Compute **descriptors** at all scales.
- **Match** them using geometric layers.
- Train on **synthetic** deformations.

Strengths and weaknesses:
- Good at **pairing** branches.
- Hard to train to high **accuracy**.

[Multi-scale convolutional point neural network](#)
Three-steps registration

1. Affine-RobOT pre-alignment.
2.a. Deep prediction network.
2.b. Smooth deformation model.

This pragmatic method:

- Is easy to train on synthetic data.
- Scales up to high-resolution: 100k points in 1s.
- Excellent results: KITTI (outdoors scans) and DirLab (lungs).

Accurate point cloud registration with robust optimal transport, Shen, Feydy et al., NeurIPS 2021.
Three-steps registration

0. Input data
1. Pre-alignment
2. Deep registration
3. Fine-tuning
Barycenter $A^* = \arg \min_A \sum_{i=1}^{4} \lambda_i \text{Loss}(A, B_i)$.

Euclidean barycenters.
\[
\text{Loss}(A, B) = \|A - B\|^2_{L^2}
\]

Wasserstein barycenters.
\[
\text{Loss}(A, B) = \text{OT}(A, B)
\]
Wasserstein barycenters

From a computational perspective:

- The problem is **convex** (easy) wrt. the weights.
- The support of the barycenter lies in the **convex hull** of the input distributions.

The **curse of dimensionality** hits hard:

- In high dimension, identifying the support can become **NP-hard**.
- In dimensions 2 and 3, we can just use a grid and recover **super fast** algorithms.

Computing OT distances and barycenters between **density maps** is a solved problem.

⇒ We can now **easily** do manifold learning with e.g. UMAP in Wasserstein spaces of **2D and 3D** distributions.
An example: Anna Song’s exploration of 3D shape textures [Son22]
Conclusion
Genuine team work

Benjamin Charlier Joan Glaunès Thibault Séjourné F.-X. Vialard Gabriel Peyré

Alain Trouvé Marc Niethammer Shen Zhengyang Olga Mula Hieu Do
Key points

• Optimal Transport = **generalized sorting**:
 ─→ Super-fast solvers on **simple domains** (esp. 2D/3D spaces).
 ─→ Simple registration for shapes that are close to each other.
 ─→ **Fundamental tool** at the intersection of geometry and statistics.
 ─→ Can we extend recent computational advances to **topology-aware** metrics?

• GPUs are more **versatile** than you think.
 ─→ Ongoing work to provide **fast GPU backends** to researchers, going beyond what Google and Facebook are ready to pay for.
Documentation and tutorials are available online

www.kernel-operations.io

www.jeanfeydy.com/geometric_data_analysis.pdf
M. Agueh and G. Carlier.

Barycenters in the Wasserstein space.

Dimitri P Bertsekas.

A distributed algorithm for the assignment problem.

Haili Chui and Anand Rangarajan.

A new algorithm for non-rigid point matching.

Marco Cuturi.

Sinkhorn distances: Lightspeed computation of optimal transport.

Steven Gold, Anand Rangarajan, Chien-Ping Lu, Suguna Pappu, and Eric Mjolsness.

New algorithms for 2d and 3d point matching: Pose estimation and correspondence.

Leonid V Kantorovich.

On the translocation of masses.
Harold W Kuhn.

The Hungarian method for the assignment problem.

Jeffrey J Kosowsky and Alan L Yuille.

The invisible hand algorithm: Solving the assignment problem with statistical physics.

Bruno Lévy.

A numerical algorithm for l2 semi-discrete optimal transport in 3d.

Quentin Mérigot.

A multiscale approach to optimal transport.

Gabriel Peyré and Marco Cuturi.

Computational optimal transport.

Bernhard Schmitzer.

Stabilized sparse scaling algorithms for entropy regularized transport problems.

Anna Song.

Generation of tubular and membranous shape textures with curvature functionals.