
Fast geometric learning with symbolic matrices

Jean Feydy1, * Joan A. Glaunès2, * Benjamin Charlier3, *

Michael M. Bronstein1,4.

NeurIPS 2020, online — December 2020.

1Imperial College London, 2Université de Paris, 3Université de Montpellier, 4Twitter
∗Equal contribution

Machine learning libraries represent most objects as tensors

M[i , j]

(in, jn,Mn) F(xi , yj)

Dense matrix

Sparse matrix Symbolic matrix

Coefficients only

Coordinates + coeffs Formula + data

Densematrices – large, contiguous arrays of numbers:

+ Convenient and well supported.

– Heavy load on thememories of our GPUs, with time-consuming

transfers taking place between layers of CUDA registers. 1

Machine learning libraries represent most objects as tensors

M[i , j] (in, jn,Mn)

F(xi , yj)

Dense matrix Sparse matrix

Symbolic matrix

Coefficients only Coordinates + coeffs

Formula + data

Sparsematrices – tensors that have few non-zero entries:

+ Represent large tensors with a small memory footprint.

– Outside of graph processing, few objects are sparse enough

to really benefit from this representation. 1

Machine learning libraries represent most objects as tensors

M[i , j] (in, jn,Mn) F(xi , yj)

Dense matrix Sparse matrix Symbolic matrix

Coefficients only Coordinates + coeffs Formula + data

Distance and kernelmatrices, point convolutions, attention layers:

+ Linearmemory usage: no morememory overflows.

+ We can optimize the use of registers for a×10 -×100 speed-up

vs. a standard PyTorch GPU baseline. 1

We provide support for this “new abstraction” on the GPU

Our library comes with all the perks of a deep learning toolbox:

+ Transparent array-like interface.

+ Full support for automatic differentiation.

+ Comprehensive collection of tutorials, available online.

Under the hood: combines an optimized C++ engine with high-level

binders for PyTorch, NumPy, Matlab and R (thanks to Ghislain Durif).

(We welcome contributors for JAX, Julia and other frameworks!)

To get started:

=⇒ pip install pykeops ⇐=

www.kernel-operations.io

2

www.kernel-operations.io

A first example: efficient nearest neighbor search in dimension 50

Create large point clouds using standard PyTorch syntax:

import torch
N, M, D = 10**6, 10**6, 50
x = torch.rand(N, 1, D).cuda() # (1M, 1, 50) array
y = torch.rand(1, M, D).cuda() # (1, 1M, 50) array

Turn dense arrays into symbolicmatrices:

from pykeops.torch import LazyTensor
x_i, y_j = LazyTensor(x), LazyTensor(y)

Create a large symbolic matrix of squared distances:

D_ij = ((x_i - y_j)**2).sum(dim=2) # (1M, 1M) symbolic

Use an .argmin() reduction to perform a nearest neighbor query:

indices_i = D_ij.argmin(dim=1) # -> standard torch tensor
3

The KeOps library combines performance with flexibility

Script of the previous slide = efficient nearest neighbor query,

on par with the bruteforce CUDA scheme of the FAISS library…

And can be used with any metric!

D_ij = ((x_i - x_j) ** 2).sum(dim=2) # Euclidean
M_ij = (x_i - x_j).abs().sum(dim=2) # Manhattan
C_ij = 1 - (x_i | x_j) # Cosine
H_ij = D_ij / (x_i[...,0] * x_j[...,0]) # Hyperbolic

KeOps supports arbitrary formulas and variables with:

• Reductions: sum, log-sum-exp, K-min, matrix-vector product, etc.

• Operations: +,×, sqrt, exp, neural networks, etc.
• Advanced schemes: batch processing, block sparsity, etc.

• Automatic differentiation: seamless integration with PyTorch. 4

KeOps lets users work with millions of points at a time

Benchmark of a matrix-vector product with a N-by-N Gaussian kernel

matrix between 3D point clouds.

100 1k 10k 100k 1M

1ms

10ms

100ms

1 s

10 s

out of memory!

Number of points N

Ti
m
e

We run NumPy, PyTorch and KeOps on a RTX 2080 Ti GPU.

NumPy (CPU)

PyTorch (GPU)

KeOps (GPU)

5

KeOps lets users experiment freely with advanced methods

KeOps provides a fast backend for research codes:

• Interfaces well with standard libraries: SciPy, GPytorch, etc.

• Speeds up Gaussian process regression: see e.g.

Kernel methods through the roof: handling billions of points

efficiently, by G. Meanti, L. Carratino, L. Rosasco, A. Rudi

(NeurIPS 2020).

• Speeds up optimal transport solvers and point cloud

convolutions by one or two orders of magnitude.

• Much more in the paper!

6

Strengths and limitations of our library

KeOps symbolic tensors:

+ Have a negligiblememory footprint.

+ Provide a sizeable speed-up for geometric computations.

– Always rely on bruteforce computations.

– Are less interesting when the formula F(xi, yj) is too large.

Our top priority for early 2021 is to mitigate these weaknesses:

we will add support for Tensor cores and standard approximation

strategies – e.g. using trees or the Nyström method.

7

Conclusion

Symbolicmatrices are to geometricML what

sparsematrices are to graph processing.

We believe that KeOps will stimulate research on:

• Clusteringmethods: fast K-Means and EM iterations.

• Data representation: UMAP, fast KNN graphs with any metric.

• Kernelmethods: kernel matrices.

• Gaussian processes: covariance matrices.

• Geometric deep learning: point convolutions.

• Natural language processing: transformer networks?

We’ll be happy to discuss these questions with you!

8

Documentation and tutorials are available online

=⇒ www.kernel-operations.io ⇐=

www.jeanfeydy.com/geometric_data_analysis.pdf 9

www.kernel-operations.io
www.jeanfeydy.com/geometric_data_analysis.pdf

