Fast geometric learning with symbolic matrices - www.kernel-operations.io

Jean Feydy^{1,*} ¹Imperial College London

We can represent tensors as:

- (a) **Dense** matrices large, contiguous **arrays** of numbers:
 - + This is a **convenient** and well supported format.
 - It puts a heavy load on the **memories** of our GPUs, with consuming transfers between layers of CUDA registers.
- (b) **Sparse** matrices if they have **few non-zero entries**:
 - + We encode **large tensors** with a small memory footprint.
 - Outside of graph processing, few objects are sparse enough to really benefit from this representation.
- (c) **Symbolic** matrices if their coefficients $M_{i,j}$ are given by a **form** that is evaluated on vectors " x_i " and " y_j ". Think of **distance** and I matrices, **point** convolutions, **attention** layers, etc.:
 - + Linear memory usage: no more memory overflows.
 - + We can optimize the use of registers for a $\times 10 \times 100$ speed-u vs. a standard PyTorch GPU baseline.

Our KeOps library provides support for symbolic matrices on CPUs and (Under the hood, it combines an optimized **C++** engine with high-level b for **PyTorch**, **NumPy**, Matlab and R – thanks to Ghislain Durif. We welcome **contributors** for JAX, Julia and other frameworks!

> pip install pykeops $\Leftarrow =$ \implies

Joan A. Glaunès^{2,*} ²Université de Paris

Benjamin Charlier^{3,*} Michael M. Bronstein^{1,4} ³Université de Montpellier *Equal contribution ⁴Twitter

	2 An extension for PyTorch, Num
	Our KeOps library comes with all the perks of a deep lear + A transparent array-like interface. + Full support for automatic differentiation . + A comprehensive collection of tutorials , available <u>onli</u>
j) rix	We support arbitrary formulas and variables with a wide r Reductions: sum, log-sum-exp, K-min, matrix-vector pro Operations: +, ×, sqrt, exp, neural networks, etc. Advanced schemes: batch processing, block sparsity, etc
	Here is how to perform a fast nearest neighbor search :
	1. Create large point clouds using standard PyTorch syn
time-	<pre>import torch N, M, D = 10**6, 10**6, 50 x = torch.rand(N, 1, D).cuda() # (1M, 1, 50) y = torch.rand(1, M, D).cuda() # (1, 1M, 50)</pre>
	2. Turn dense arrays into symbolic matrices:
	from pykeops.torch import LazyTensor x_i, y_j = LazyTensor(x), LazyTensor(y)
	3. Create a large symbolic matrix of squared distances:
	D_ij = ((x_i - y_j)**2).sum(dim=2) # (1M, 1M)
nula F	4. Use an .argmin() reduction to perform a nearest n
kernet	<pre>indices_i = D_ij.argmin(dim=1) # -> standard t</pre>
цр	The line above is just as fast as the bruteforce ("Flat") (the FAISS library And can be used with any metric !
GPUs.	<pre>D_ij = ((x_i - x_j) ** 2).sum(dim=2) # Eucl M_ij = (x_i - x_j).abs().sum(dim=2) # Manh C_ij = 1 - (x_i x_j) # Cosi H_ij = D_ij / (x_i[,0] * x_j[,0]) # Hype</pre>
Inders	More generally: use symbolic tensors any way you like !
	<pre>K_ij = (- D_ij).exp() # (N,M) symbolic Gaussian ker a = K_ij @ torch.rand(M,5) # (N,M) sym.*(M,5) dens g_x, = autograd.grad((a ** 2).sum(), [x]) # Seamle</pre>

1Py, etc.

rning toolbox:

<u>ne</u>.

range of: oduct, etc.

ntax:

array array

symbolic

neighbor query:

torch tensor

CUDA scheme of

lidean nattan lne erbolic

rnel matrix se = (N, 5) denseess backprop.

Symbolic matrices are to geometric ML what **sparse** matrices are to **graph** processing.

To illustrate this, we **benchmark** a matrix-vector product with a **N-by-N** Gaussian kernel matrix between 3D point clouds on a RTX 2080 Ti GPU:

3

For geometric applications in dimension 1 to 100, KeOps **symbolic** tensors:

- + Have a negligible **memory** footprint.
- + Provide a sizeable **speed-up** for geometric computations.
- Always rely on **bruteforce** computations.
- Are less interesting when the formula $F(x_i, y_j)$ is **too large**.

Our top priority for **early 2021** is to mitigate these weaknesses: we will add support for Tensor cores and standard approximation strategies.

Overall, we believe that **KeOps** will stimulate research on:

- + clustering algorithms and UMAP-like methods,
- + Kernel methods and Gaussian processes,
- + **optimal** transport theory,
- + geometric deep learning and shape analysis,
- + and even, possibly, natural **language** processing? We'll be happy to **discuss** these questions with you!

You're welcome to check our **paper**, visit: www.kernel-operations.io and the in-depth tutorial "Geometric data analysis, beyond convolutions": www.jeanfeydy.com/geometric_data_analysis.pdf

Applications