
Fast geometric learning with symbolic matrices – www.kernel-operations.io
Jean Feydy1,* Joan A. Glaunès2,* Benjamin Charlier3,* Michael M. Bronstein1,4

1Imperial College London 2Université de Paris 3Université de Montpellier 4Twitter ∗Equal contribution

1 Symbolic matrices

M [i , j] (in, jn, Mn) F (xi , yj)

(a) Dense matrix (b) Sparse matrix (c) Symbolic matrix
Coefficients only Coordinates + coeffs Formula + data

We can represent tensors as:
(a) Dense matrices – large, contiguous arrays of numbers:

+ This is a convenient and well supported format.
– It puts a heavy load on the memories of our GPUs, with time-
consuming transfers between layers of CUDA registers.

(b) Sparse matrices – if they have few non-zero entries:
+ We encode large tensors with a small memory footprint.
– Outside of graph processing, few objects are sparse enough
to really benefit from this representation.

(c) Symbolic matrices – if their coefficients Mi,j are given by a formula F

that is evaluated on vectors “xi” and “yj”. Think of distance and kernel
matrices, point convolutions, attention layers, etc.:
+ Linear memory usage: no more memory overflows.
+ We can optimize the use of registers for a ×10 -×100 speed-up
vs. a standard PyTorch GPU baseline.

Our KeOps library provides support for symbolic matrices on CPUs and GPUs.
Under the hood, it combines an optimized C++ engine with high-level binders
for PyTorch, NumPy, Matlab and R – thanks to Ghislain Durif.
We welcome contributors for JAX, Julia and other frameworks!

=⇒ pip install pykeops ⇐=

2 An extension for PyTorch, NumPy, etc.

Our KeOps library comes with all the perks of a deep learning toolbox:
+ A transparent array-like interface.
+ Full support for automatic differentiation.
+ A comprehensive collection of tutorials, available online.

We support arbitrary formulas and variables with a wide range of:
Reductions: sum, log-sum-exp, K-min, matrix-vector product, etc.
Operations: +, ×, sqrt, exp, neural networks, etc.
Advanced schemes: batch processing, block sparsity, etc.

Here is how to perform a fast nearest neighbor search:
1. Create large point clouds using standard PyTorch syntax:

import torch
N, M, D = 10**6, 10**6, 50
x = torch.rand(N, 1, D).cuda() # (1M, 1, 50) array
y = torch.rand(1, M, D).cuda() # (1, 1M, 50) array

2. Turn dense arrays into symbolic matrices:
from pykeops.torch import LazyTensor
x_i, y_j = LazyTensor(x), LazyTensor(y)

3. Create a large symbolic matrix of squared distances:

D_ij = ((x_i - y_j)**2).sum(dim=2) # (1M, 1M) symbolic

4. Use an .argmin() reduction to perform a nearest neighbor query:

indices_i = D_ij.argmin(dim=1) # -> standard torch tensor

The line above is just as fast as the bruteforce (“Flat”) CUDA scheme of
the FAISS library… And can be used with any metric!

D_ij = ((x_i - x_j) ** 2).sum(dim=2) # Euclidean
M_ij = (x_i - x_j).abs().sum(dim=2) # Manhattan
C_ij = 1 - (x_i | x_j) # Cosine
H_ij = D_ij / (x_i[...,0] * x_j[...,0]) # Hyperbolic

More generally: use symbolic tensors any way you like!

K_ij = (- D_ij).exp() # (N,M) symbolic Gaussian kernel matrix
a = K_ij @ torch.rand(M,5) # (N,M) sym.*(M,5) dense = (N,5) dense
g_x, = autograd.grad((a ** 2).sum(), [x]) # Seamless backprop.

3 Applications

Symbolic matrices are to geometric ML what
sparse matrices are to graph processing.

To illustrate this, we benchmark a matrix-vector product with a N-by-N
Gaussian kernel matrix between 3D point clouds on a RTX 2080 Ti GPU:

N = 100 N = 1k N = 10k N = 100k N = 1M

1ms

10ms

100ms

1 s

10 s

out of memory!

Ti
m
e

NumPy (CPU)
PyTorch
PyTorch + KeOps

For geometric applications in dimension 1 to 100, KeOps symbolic tensors:
+ Have a negligible memory footprint.
+ Provide a sizeable speed-up for geometric computations.
– Always rely on bruteforce computations.
– Are less interesting when the formula F (xi, yj) is too large.

Our top priority for early 2021 is to mitigate these weaknesses: we will
add support for Tensor cores and standard approximation strategies.

Overall, we believe that KeOps will stimulate research on:
+ clustering algorithms and UMAP-like methods,
+ Kernel methods and Gaussian processes,
+ optimal transport theory,
+ geometric deep learning and shape analysis,
+ and even, possibly, natural language processing?

We’ll be happy to discuss these questions with you!

You’re welcome to check our paper, visit: www.kernel-operations.io
and the in-depth tutorial “Geometric data analysis, beyond convolutions”:

www.jeanfeydy.com/geometric_data_analysis.pdf

1

www.kernel-operations.io
https://www.kernel-operations.io/keops/_auto_tutorials/index.html
https://www.jeanfeydy.com/Papers/KeOps_NeurIPS_2020.pdf
www.kernel-operations.io
www.jeanfeydy.com/geometric_data_analysis.pdf

