
Fast libraries for geometric data analysis

Jean Feydy
HeKA team, Inria Paris

Inserm, Université Paris-Cité

11th of July, 2022
discussion with Nvidia

1

Who am I?

Background inmathematics and data sciences:
2012–2016 ENS Paris, mathematics.

2014–2015 M2mathematics, vision, learning at ENS Cachan.

2016–2019 PhD thesis inmedical imagingwith Alain Trouvé at ENS Cachan.

2019–2021 Geometric deep learningwith Michael Bronstein at Imperial College.

2021+ Medical data analysis in the HeKA INRIA team (Paris).

Close ties with healthcare:
2015+ Medical imaging.

2016+ Computational anatomy.

2021+ Public health.

2

A focus on the geometric side of data sciences

Physiological measurements

Drug consumption history

Cognitive scores

MRI/CT images

Domain-specific observations
on a population of N patients

Regression (kernels...)

Visualization (UMAP...)

Classification (hierarchical...)

Clustering (K-Means...)

General machine
learning methods

N-by-N matrix
of similarities

My research is about understanding similarity structures.
What are the implicit priors that they reflect?
How can wemanipulate them efficiently?

3

A field that is moving fast

Target. Allow scientists to work with
tailor-mademodels as efficiently as possible.

Challenge. The advent of Graphics Processing Units (GPU):

• Incredible value for money:
1 000€ ≃ 1 000 cores ≃ 1012 operations/s.

• Bottleneck: constraints on register usage.

“User-friendly” Python ecosystem, consolidated around
a small number of key operations.

7,000 cores
in a single GPU.

4

My project: a long-term investiment in the foundations of our field

Solution. Expand the standard toolbox in data sciences
to deal with the challenges of the healthcare industry.

Ease the development of advancedmodels,
without compromising on numerical performance.

Today’s talk:
1. Efficient manipulation of “symbolic”matrices (distances, kernel, etc.).
2. Optimal transport: generalized sorting methods.
3. Survival analysis on the French social security data.

5

1. Symbolic matrices

Computing libraries represent most objects as tensors

Context. Constrainedmemory accesses on the GPU:

• Long access times to the registers
penalize the use of large dense arrays.

• Hard-wired contiguousmemory accesses
penalize the use of sparsematrices.

Challenge. In order to reach optimal run times:

• Restrict ourselves to operations that are supported
by the constructor: convolutions, FFT, etc.

• Develop new routines from scratch in C++/CUDA
(FAISS, KPConv…): several months of work.

M[i , j]

Dense array

(in, jn, Mn)

Sparsematrix 6

The KeOps library: efficient support for symbolic matrices

Solution. KeOps – www.kernel-operations.io:

• For PyTorch, NumPy, Matlab and R, on CPU and GPU.
• Automatic differentiation.
• Just-in-time compilation of optimized C++ schemes,
triggered for every new reduction: sum, min, etc.

If the formula “F” is simple (⩽ 100 arithmetic operations):
“100k × 100k” computation → 10ms – 100ms,
“1M × 1M” computation → 1s – 10s.

Hardware ceiling of 1012 operations/s.
×10 to ×100 speed-up vs standard GPU implementations

for a wide range of problems.

F(xi , yj)

Symbolic matrix
Formula + data

• Distances d(xi,yj).
• Kernel k(xi,yj).
• Numerous
transforms.

7

A first example: efficient nearest neighbor search in dimension 50

Create large point clouds using standard PyTorch syntax:
import torch
N, M, D = 10**6, 10**6, 50
x = torch.rand(N, 1, D).cuda() # (1M, 1, 50) array
y = torch.rand(1, M, D).cuda() # (1, 1M, 50) array

Turn dense arrays into symbolicmatrices:
from pykeops.torch import LazyTensor
x_i, y_j = LazyTensor(x), LazyTensor(y)

Create a large symbolic matrix of squared distances:
D_ij = ((x_i - y_j) ** 2).sum(dim=2) # (1M, 1M) symbolic

Use an .argmin() reductionto perform a nearest neighbor query:
indices_i = D_ij.argmin(dim=1) # -> standard torch tensor

8

The KeOps library combines performance with flexibility

Script of the previous slide = efficient nearest neighbor query,
on parwith the bruteforce CUDA scheme of the FAISS library…

And can be used with anymetric!

D_ij = ((x_i - x_j) ** 2).sum(dim=2) # Euclidean
M_ij = (x_i - x_j).abs().sum(dim=2) # Manhattan
C_ij = 1 - (x_i | x_j) # Cosine
H_ij = D_ij / (x_i[...,0] * x_j[...,0]) # Hyperbolic

KeOps supports arbitrary formulas and variableswith:

• Reductions: sum, log-sum-exp, K-min, matrix-vector product, etc.
• Operations: +, ×, sqrt, exp, neural networks, etc.
• Advanced schemes: batch processing, block sparsity, etc.
• Automatic differentiation: seamless integration with PyTorch. 9

KeOps lets users work withmillions of points at a time

Benchmark of a Gaussian convolution
between clouds of N 3D points on a RTX 2080 Ti GPU.

100 1k 10k 100k 1M

1ms

10ms

100ms

1 s

10 s

out of memory!

Number of points N

Ti
m
e

NumPy (CPU)

PyTorch (GPU)

KeOps (GPU)

10

Applications

KeOps is a good fit for machine learning research

K-Means. Gaussian Mixture Model.

Use any kernel, metric or formula you like!
11

KeOps is a good fit for machine learning research

Spectral analysis. UMAP in hyperbolic space.

Use any kernel, metric or formula you like!
12

Applications to Kriging, spline, Gaussian process, kernel regression

A standard tool for regression [Lec18]:

Under the hood, solve a kernel linear system:

(𝜆 Id + 𝐾𝑥𝑥) 𝑎 = 𝑏 i.e. 𝑎 ← (𝜆 Id + 𝐾𝑥𝑥)−1𝑏

where 𝜆 ⩾ 0 et (𝐾𝑥𝑥)𝑖,𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗) is a positive definite matrix.
13

Applications to Kriging, spline, Gaussian process, kernel regression

KeOps symbolic tensors (𝐾𝑥𝑥)𝑖,𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗) :

• Can be fed to standard solvers: SciPy, GPyTorch, etc.

• GPytorch on the 3DRoad dataset (N = 278k, D = 3):
7hwith 8 GPUs → 15mnwith 1 GPU.

• Provide a fast backend for research codes:
see e.g. Kernel methods through the roof: handling billions of points efficiently,
by G. Meanti, L. Carratino, L. Rosasco, A. Rudi (2020).

14

Geometric deep learning

Context. Trainable models on non-Euclidean domains
(point clouds, surfaces, graphs, etc.), beyond 2D/3D images.

Challenge. In spite of growing interest in the industry,
these models still lack support on the numerical side.
C++/CUDA is (often) required to reach top performance.

Solution. Using KeOps, with a few lines of Python:
• Local interactions: K-nearest neighbors.
• Global interactions: generalized convolutions.

Modelling freedom
⟹ Domain-specific priors.

Quasi-geodesic
convolution on a
protein surface.

15

Applications to protein sciences [SFCB20]

(a) Raw protein data. (b) Interface. (c) Prediction.

Fast end-to-end learning on protein surfaces

1. MaSIF

2. Ours

atoms a. surface mesh b. features c. patches d. output

a. points, normals b. features c. coordinates d. output

6 s 20 s 50 s

70ms 50ms 6ms 40ms

165ms

pre-processing on the fly

⟶ ×100 -×1,000 faster, lighter
and fully differentiable.

2. Fast optimal transport solvers

Optimal transport (OT) generalizes sorting to spaces of dimension D> 1

Context. If A = (x1, … , xN) and B = (y1, … , yN)
are two clouds of N points in ℝD, we define:

OT(A,B) = min
𝜎∈𝒮N

1
2N

N

∑
i =1

‖ x𝑖 − y𝜎(𝑖)‖
2

Generalizes sorting to metric spaces.
We turn a distancematrix into a permutation.

We extend this definition toweighted samples,
continuous distributions with outliers, etc.

x1
x2
x3
x4

x5

y3
y5
y2

y4

y1

assignment
𝜎 ∶ [[1, 5]] →[[1, 5]]

Optimal transport has twomain uses in data sciences

The optimal matching xi ↦ y𝜎(i) is:
• A nearest neighbor projection subject to
a bijectivity constraint.

• A fundamental operation in 3D shape analysis.
• A staple of operations research.

The total cost OT(A,B) induces:
• A useful distance between probability distributions.
• Particle-based interpolationwith

arg minA 𝜆1OT(A,B1) + ⋯ + 𝜆KOT(A,BK).

OT geodesic

OT barycenters

But how should we solve the OT problem?

Key dates for discrete optimal transport with N points:

• [Kan42]: Dual problem of Kantorovitch.
• [Kuh55]: Hungarian methods in 𝑂(N3).
• [Ber79]: Auction algorithm in 𝑂(N2).
• [KY94]: SoftAssign = Sinkhorn + simulated annealing, in 𝑂(N2).
• [GRL+98, CR00]: Robust Point Matching = Sinkhorn as a loss.
• [Cut13]: Start of the GPU era.
• [Mér11, Lév15, Sch19]: multi-scale solvers in 𝑂(N logN).

• Solution, today: Multiscale Sinkhorn algorithm, on the GPU.

⟹ GeneralizedQuickSort algorithm.

Scaling up optimal transport to anatomical data

Progresses of the last decade add up to a ×100 - ×1000 acceleration:

Sinkhorn GPU
×10
−−→ + KeOps

×10
−−→ + Annealing

×10
−−→ + Multi-scale

With a precision of 1%, on amodern gaming GPU:

pip install
geomloss

+
modern GPU
(1 000 €)

⟹

10k points in 30-50ms 100k points in 100-200ms

Lung registration “Exhale – Inhale”

Complex deformations, high resolution (50k–300k points), high accuracy (< 1mm).

State-of-the-art networks – and their limitations

N points, 3 or 4 channels

 N points, 64 channels

C points, 64 channels

C/4 points,
128 channels

C/8 points,
256 channels

C/32 points,
256 channels

Target

L0

L1

L2

L3

L4

N points, 3 or 4 channels

 N points, 64 channels

C points, 64 channels

C/4 points,
128 channels

C/8 points,
256 channels

C/32 points,
256 channels

Source

L0

L1

L2

L3

L4

PointPWC Block

PointPWC Block

PointPWC Block

Parameter θ

Multi-scale convolutional
point neural network.

Point neural nets, in practice:
• Compute descriptors at all scales.
• Match them using geometric
layers.

• Train on synthetic deformations.

Strengths and weaknesses:
• Good at pairing branches.
• Hard to train to high accuracy.

⟹ Complementary to OT.

Three-steps registration

xi
yj

θ

θ

1. Affine-RobOT pre-alignment.

2.a. Deep prediction network.

2.b. Smooth deformation model.

3. Spline-RobOT post-processing. Real source. Synthetic target.

Local deformation. Global deformation.
End-to-end
training on
synthetic

pairs.

This pragmaticmethod:

• Is easy to train on synthetic data.
• Scales up to high-resolution: 100k points in 1s.
• Excellent results: KITTI (outdoors scans) and DirLab (lungs).

Accurate point cloud registration with robust optimal transport,
Shen, Feydy et al., NeurIPS 2021.

Three-steps registration

Survival analysis on GPUs

Survival analysis: a classification problem on time series

Age

At most 30 years of records

Fundamental problem for:

• Factories: why are components breaking?
• Businesses: why are customers leaving?
• Public health: why are patients getting cancer?

Survival analysis: implementations

Standardmodel: Cox Proportional Hazards,
with time-dependent features such as Weighted Cumulated Exposures (WCE).

Standard implementation: the survival andWCE packages for R (10M+ downloads).

Excellent packaging, but CPU only:

• this is OK for clinical trials (1k–10k patients),
• but prohibitively slow for large-scale studies.

Projet Epi-Phare - 150k€: scale up this method to 70M+ patients (SNDS).
Sep. 2021 – Aug. 2023: we are halfway through.

Step 1: leverage Graphics Processing Units (GPUs)

Striking similarities between survival andmachine learning models:

• Coxmodel = logistic regression on a graph (1 node = 1 patient).
• Weighted Cumulated Exposures = kernel features.

I have implemented a fast GPU solver for these problems.
Alexis Van Straaten is packaging it as a R library.

survival-GPU (for R and Python) produces the exact same output
as the standard survival andWCE packages, but x1,000 faster.

Twomain consequences:

• Bootstrap: we can repeat an experiment 1,000 times to estimate uncertainties.
• Scalability: we can processmillions of patients in minutes.

Step 2: get access to the French social security data (SNDS)

• Pierre Sabatier (pharmacologist at the HEGP) has access to the SNDS.
• Inria received a security clearance for the SNDS in June 2021.
• Inria paid for myweek-long SNDS training in May 2022 – thanks!

We are now starting to work on this data: clinical papers out soon.

Conclusion

Key points

• Symbolic matrices are to geometricML what
sparsematrices are to graph processing:

⟶ KeOps: x30 speed-up vs. PyTorch, TF et JAX.
⟶ Useful in a wide range of settings.

• Optimal Transport = generalized sorting :
⟶ Simple registration for shapes that are close to each other.
⟶ Super-fast 𝑂(N logN) solvers.

• These tools open new paths for geometers and statisticians:
⟶ GPUs are more versatile than you think.
⟶ Ongoing work to provide fast GPU backends to researchers,

going beyond what Google and Facebook are ready to pay for.

Summary: a long-term investment that is starting to bear fruits

Twomajor evolutions:

• “Big” geometric problem: N > 10k ⟶ N > 1M.
• Optimal transport: linear problem + generalized quicksort.

2016 2017 2018 2019 2020 2021

Symbolic matrices – KeOps

Optimal transport – GeomLoss

Shape analysis

Deep learning

Registration

Clinical app.

Genuine teamwork

Alain Trouvé Thibault Séjourné F.-X. Vialard Gabriel Peyré

Benjamin Charlier Joan Glaunès Freyr Sverrisson Shen Zhengyang

+ Marc Niethammer, Bruno Correia, Michael Bronstein…

Going forward: the long road to genuine clinical impact

These tools are diffusing well in our research communities (170k+ downloads).
The target is now to go beyond “expert users”.

We are actively working on:

• High performance on CPU.
• Native support for approximation strategies.
• A 100% transparent and NumPy-compatible API for KeOps+GeomLoss.
• Standard benchmarks for kernel methods and optimal transport.
• Clinical application on drug consumption data from the SNDS.

Needless to say, we’re very open to discussions :-)

Documentation and tutorials are available online

⟹ www.kernel-operations.io ⟸

www.jeanfeydy.com/geometric_data_analysis.pdf

www.kernel-operations.io
www.jeanfeydy.com/geometric_data_analysis.pdf

References

References i

Dimitri P Bertsekas.

A distributed algorithm for the assignment problem.

Lab. for Information and Decision Systems Working Paper, M.I.T., Cambridge, MA, 1979.

Grégoire Clarté, Antoine Diez, and Jean Feydy.

Collective proposal distributions for nonlinear MCMC samplers: Mean-field
theory and fast implementation.

arXiv preprint arXiv:1909.08988, 2019.

References ii

Christophe Chnafa, Simon Mendez, and Franck Nicoud.

Image-based large-eddy simulation in a realistic left heart.

Computers & Fluids, 94:173–187, 2014.

Haili Chui and Anand Rangarajan.

A new algorithm for non-rigid point matching.

In Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on,
volume 2, pages 44–51. IEEE, 2000.

References iii

Adam Conner-Simons and Rachel Gordon.

Using ai to predict breast cancer and personalize care.

http://news.mit.edu/2019/using-ai-predict-breast-cancer-and-personalize-care-
0507, 2019.

MIT CSAIL.

Marco Cuturi.

Sinkhorn distances: Lightspeed computation of optimal transport.

In Advances in Neural Information Processing Systems, pages 2292–2300, 2013.

http://news.mit.edu/2019/using-ai-predict-breast-cancer-and-personalize-care-0507
http://news.mit.edu/2019/using-ai-predict-breast-cancer-and-personalize-care-0507

References iv

Pierre Degond, Amic Frouvelle, Sara Merino-Aceituno, and Ariane Trescases.

Alignment of self-propelled rigid bodies: from particle systems tomacroscopic
equations.

In International workshop on Stochastic Dynamics out of Equilibrium, pages 28–66.
Springer, 2017.

Pierre Degond and Sébastien Motsch.

Continuum limit of self-driven particles with orientation interaction.

Mathematical Models and Methods in Applied Sciences, 18(supp01):1193–1215, 2008.

References v

Steven Gold, Anand Rangarajan, Chien-Ping Lu, Suguna Pappu, and Eric Mjolsness.

New algorithms for 2d and 3d point matching: Pose estimation and
correspondence.

Pattern recognition, 31(8):1019–1031, 1998.

Leonid V Kantorovich.

On the translocation of masses.

In Dokl. Akad. Nauk. USSR (NS), volume 37, pages 199–201, 1942.

References vi

Harold W Kuhn.

The Hungarianmethod for the assignment problem.

Naval research logistics quarterly, 2(1-2):83–97, 1955.

Jeffrey J Kosowsky and Alan L Yuille.

The invisible hand algorithm: Solving the assignment problemwith statistical
physics.

Neural networks, 7(3):477–490, 1994.

References vii

Florent Leclercq.

Bayesian optimization for likelihood-free cosmological inference.

Physical Review D, 98(6):063511, 2018.

Bruno Lévy.

A numerical algorithm for l2 semi-discrete optimal transport in 3d.

ESAIM: Mathematical Modelling and Numerical Analysis, 49(6):1693–1715, 2015.

References viii

Christian Ledig, Andreas Schuh, Ricardo Guerrero, Rolf A Heckemann, and Daniel
Rueckert.

Structural brain imaging in Alzheimer’s disease andmild cognitive impairment:
biomarker analysis and sharedmorphometry database.

Scientific reports, 8(1):11258, 2018.

Quentin Mérigot.

Amultiscale approach to optimal transport.

In Computer Graphics Forum, volume 30, pages 1583–1592. Wiley Online Library, 2011.

References ix

Bernhard Schmitzer.

Stabilized sparse scaling algorithms for entropy regularized transport
problems.

SIAM Journal on Scientific Computing, 41(3):A1443–A1481, 2019.

Freyr Sverrisson, Jean Feydy, Bruno E. Correia, and Michael M. Bronstein.

Fast end-to-end learning on protein surfaces.

bioRxiv, 2020.

	1. Symbolic matrices
	Applications
	Appendix
	2. Fast optimal transport solvers
	Survival analysis on GPUs
	Conclusion
	References

