Fast libraries for geometric data analysis

Jean Feydy
HeKA team, Inria Paris
Inserm, Université Paris-Cité

22nd of May, 2023
Healthcare AI Grand Round
Nvidia, online
Who am I?

Background in **mathematics** and **data sciences**:

- **2014–2015** M2 mathematics, vision, learning at ENS Cachan.
- **2016–2019** PhD thesis in **medical imaging** with Alain Trouvé at ENS Cachan.
- **2019–2021** **Geometric deep learning** with Michael Bronstein at Imperial College.
 - **2021+** **Medical data analysis** in the HeKA INRIA team (Paris).

Close ties with **healthcare**:

- **2015+** Medical imaging.
- **2016+** Computational anatomy.
- **2021+** Public health.
A focus on the geometric side of data sciences

Domain-specific observations on a population of N patients

MRI/CT images
Cognitive scores
Physiological measurements
Drug consumption history

N-by-N matrix of similarities

General machine learning methods

Clustering (K-Means...)
Classification (hierarchical...)
Regression (kernels...)
Visualization (UMAP...)

My research is about understanding **similarity structures**. What are the implicit **priors** that they reflect? How can we manipulate them **efficiently**?
Target. Allow scientists to work with tailor-made models as efficiently as possible.

Challenge. The advent of Graphics Processing Units (GPU):

- Incredible value for money:
 \[1000\text{€} \approx 1000 \text{ cores} \approx 10^{12} \text{ operations/s}.
- Bottleneck: low-level memory usage.

“User-friendly” Python ecosystem, consolidated around a small number of key operations.

7,000 cores in a single GPU.
Solution. Expand the standard toolbox in data sciences to deal with the challenges of the healthcare industry.

Ease the development of advanced models, without compromising on numerical performance.

Today’s talk:
1. Efficient manipulation of “symbolic” matrices (distances, kernel, etc.).
2. **Optimal transport**: generalized sorting methods.
3. The long road to standardization and clinical impact.
1. Symbolic matrices
Computing libraries represent most objects as tensors

Context. Constrained memory accesses on the GPU:

- **Long access times** to the registers penalize the use of large **dense** arrays.
- Hard-wired **contiguous** memory accesses penalize the use of **sparse** matrices.

Challenge. In order to reach optimal run times:

- **Restrict** ourselves to operations that are supported by the constructor: convolutions, FFT, etc.
- Develop new routines from scratch in C++/CUDA (FAISS, KPConv...): **several months of work**.
The KeOps library: efficient support for symbolic matrices

Solution. KeOps – www.kernel-operations.io:

- For PyTorch, NumPy, Matlab and R, on **CPU and GPU**.
- **Automatic differentiation**.
- Just-in-time **compilation** of **optimized** C++ schemes, triggered for every new **reduction**: sum, min, etc.

If the formula “F” is simple (≤ 100 arithmetic operations):

- “100k × 100k” computation → 10ms – 100ms,
- “1M × 1M” computation → 1s – 10s.

Hardware ceiling of 10^{12} operations/s.
×10 to ×100 **speed-up** vs standard GPU implementations for a wide range of problems.

Symbolic matrix

Formula + data

- Distances d(x_i,y_j).
- Kernel k(x_i,y_j).
- Numerous transforms.
A first example: efficient nearest neighbor search in dimension 50

Create large point clouds using **standard PyTorch syntax**:

```python
import torch
N, M, D = 10**6, 10**6, 50
x = torch.randn(N, 1, D).cuda() # (1M, 1, 50) array
y = torch.randn(1, M, D).cuda() # (1, 1M, 50) array
```

Turn **dense** arrays into **symbolic** matrices:

```python
from pykeops.torch import LazyTensor
x_i, y_j = LazyTensor(x), LazyTensor(y)
```

Create a large **symbolic matrix** of squared distances:

```python
D_ij = ((x_i - y_j) ** 2).sum(dim=2) # (1M, 1M) symbolic
```

Use an `.argmin()` **reduction** to perform a nearest neighbor query:

```python
indices_i = D_ij.argmin(dim=1) # -> standard torch tensor
```
The KeOps library combines performance with flexibility

Script of the previous slide = efficient nearest neighbor query, **on par** with the brute force CUDA scheme of the **FAISS** library…

And can be used with **any metric**!

\[
D_{ij} = ((x_i - x_j)^2).sum(dim=2) \quad \# \text{ Euclidean}
\]

\[
M_{ij} = (x_i - x_j).abs().sum(dim=2) \quad \# \text{ Manhattan}
\]

\[
C_{ij} = 1 - (x_i \mid x_j) \quad \# \text{ Cosine}
\]

\[
H_{ij} = D_{ij} / (x_i[...,
0] * x_j[...,
0]) \quad \# \text{ Hyperbolic}
\]

KeOps supports arbitrary **formulas** and **variables** with:

- **Reductions**: sum, log-sum-exp, K-min, matrix-vector product, etc.
- **Operations**: +, ×, sqrt, exp, neural networks, etc.
- **Advanced schemes**: batch processing, block sparsity, etc.
- **Automatic differentiation**: seamless integration with PyTorch.
KeOps lets users work with millions of points at a time

Benchmark of a Gaussian convolution

\[a_i \leftarrow \sum_{j=1}^{N} \exp(-\|x_i - y_j\|_2^2) b_j \]

between clouds of N 3D points on a A100 GPU.
Yet another ML compiler?

Many impressive tools out there (Numba, Triton, Halide…):

- Focus on **generality** (software + hardware).
- Increasingly easy to use via e.g. PyTorch 2.0.

KeOps fills a different niche (a bit like cuFFT, FFTW…):

- Focus on a **single major bottleneck**: geometric interactions.
- **Agnostic** with respect to Euclidean / non-Euclidean formulas.
- Fully compatible with PyTorch, NumPy, R.
- Can actually be **used by mathematicians**.

KeOps is a **bridge** between geometers (with a maths background) and compiler experts (with a CS background).
Applications
KeOps is a good fit for machine learning research

K-Means.

Gaussian Mixture Model.

Use **any** kernel, metric or formula **you** like!
KeOps is a good fit for machine learning research

Spectral analysis.

UMAP in hyperbolic space.

Use any kernel, metric or formula you like!
Applications to Kriging, spline, Gaussian process, kernel regression

A standard tool for regression [Lec18]:

Under the hood, solve a **kernel linear system**:

\[(\lambda \text{Id} + K_{xx})a = b\]
i.e.
\[a \leftarrow (\lambda \text{Id} + K_{xx})^{-1}b\]

where \(\lambda \geq 0\) et \((K_{xx})_{i,j} = k(x_i, x_j)\) is a positive definite matrix.
Applications to Kriging, spline, Gaussian process, kernel regression

KeOps symbolic tensors \((K_{xx})_{i,j} = k(x_i, x_j) \):

- Can be fed to standard solvers: SciPy, GPyTorch, etc.

- GPytorch on the 3DRoad dataset (N = 278k, D = 3):

 7h with 8 GPUs \(\rightarrow \) 15mn with 1 GPU.

- Provide a fast backend for research codes:
 see e.g. Kernel methods through the roof: handling billions of points efficiently, by G. Meanti, L. Carratino, L. Rosasco, A. Rudi (2020).
Geometric deep learning

Context. Trainable models on **non-Euclidean domains** (point clouds, surfaces, graphs, etc.), beyond 2D/3D images.

Challenge. In spite of growing interest in the industry, these models still **lack support** on the numerical side. C++/CUDA is (often) required to reach top performance.

Solution. Using KeOps, with a few lines of Python:
- **Local** interactions: K-nearest neighbors.
- **Global** interactions: generalized convolutions.

Modelling freedom

⇒ **Domain-specific** priors.

Quasi-geodesic convolution on a protein surface.
Applications to protein sciences [SFCB20]

(a) Raw protein data.

(b) Interface.

(c) Prediction.
Fast end-to-end learning on protein surfaces

1. MaSIF
 a. surface mesh
 b. features
 c. patches
 d. output
 6 s → 20 s → 50 s → 165 ms

2. Ours
 a. points, normals
 b. features
 c. coordinates
 d. output
 70 ms → 50 ms → 6 ms → 40 ms

Pre-processing on the fly → ×100-×1,000 faster, lighter and fully differentiable.
Idea 1: on-the-fly sampling of protein surfaces

Fast, fully differentiable, heterogeneous batches (without padding).
Idea 2: quasi-geodesic convolutions

Fast, fully differentiable, heterogeneous batches (without padding).
KeOps lets us implement:

- **Custom** operations that best reflect a biological prior.
- Zero need to talk about CUDA blocks, threads, etc.
- Great tool for prototyping with geometric ideas.

Main limitation: beyond 16-32 channels per convolution, register spilling.

This is just **one example** of architecture that is equivariant to isometries.

(Some?) general E3NN layers could also be accelerated: we can talk about it.
2. Fast optimal transport solvers
Optimal transport (OT) generalizes sorting to spaces of dimension $D > 1$

Context. If $A = (x_1, \ldots, x_N)$ and $B = (y_1, \ldots, y_N)$ are two clouds of N points in \mathbb{R}^D, we define:

$$OT(A, B) = \min_{\sigma \in S_N} \frac{1}{2N} \sum_{i=1}^{N} \| x_i - y_{\sigma(i)} \|^2$$

Generalizes sorting to metric spaces.
We turn a distance matrix into a permutation.

We extend this definition to weighted samples, continuous distributions with outliers, etc.

assignment
$\sigma : [1, 5] \rightarrow [1, 5]$
Optimal transport has two main uses in data sciences

The optimal matching $x_i \mapsto y_{\sigma(i)}$ is:
- A nearest neighbor projection subject to a bijectivity constraint.
- A fundamental operation in 3D shape analysis.
- A staple of operations research.

The total cost $\text{OT}(A, B)$ induces:
- A useful distance between probability distributions.
- Particle-based interpolation with
 $$\arg\min_A \lambda_1 \text{OT}(A, B_1) + \cdots + \lambda_k \text{OT}(A, B_k).$$
But how should we solve the OT problem?

Key dates for discrete optimal transport with N points:

- [Kan42]: **Dual** problem of Kantorovitch.
- [Kuh55]: **Hungarian** methods in $O(N^3)$.
- [Ber79]: **Auction** algorithm in $O(N^2)$.
- [KY94]: **SoftAssign** = Sinkhorn + simulated annealing, in $O(N^2)$.
- [GRL+98, CR00]: **Robust Point Matching** = Sinkhorn as a loss.
- [Cut13]: Start of the **GPU era**.
- [Mér11, Lév15, Sch19]: **multi-scale** solvers in $O(N \log N)$.

- **Solution**, today: **Multiscale Sinkhorn algorithm, on the GPU**.

 \implies Generalized **QuickSort** algorithm.
Scaling up optimal transport to anatomical data

Progresses of the last decade add up to a $\times 100 - \times 1000$ acceleration:

Sinkhorn GPU $\xrightarrow{\times 10}$ + KeOps $\xrightarrow{\times 10}$ + Annealing $\xrightarrow{\times 10}$ + Multi-scale

With a precision of 1%, on a modern gaming GPU:

```
pip install geomloss
```

moderate GPU (1 000 €)

10k points in 30-50ms

100k points in 100-200ms
Lung registration “Exhale – Inhale”

Complex deformations, high resolution (50k–300k points), high accuracy (< 1mm).
State-of-the-art networks – and their limitations

Point neural nets, **in practice:**
- Compute **descriptors** at all scales.
- **Match** them using geometric layers.
- Train on **synthetic** deformations.

Strengths and weaknesses:
- Good at **pairing** branches.
- Hard to train to high **accuracy**.

⇒ **Complementary** to OT.

Multi-scale convolutional point neural network.
Three-steps registration

1. Affine-RobOT pre-alignment.
2.a. Deep prediction network.
2.b. Smooth deformation model.

This **pragmatic** method:

- Is **easy to train** on synthetic data.
- Scales up to high-resolution: 100k points in 1s.
- Excellent results: **KITTl** (outdoors scans) and **DirLab** (lungs).

Three-steps registration

0. Input data
1. Pre-alignment

Zoom!
2. Deep registration
3. Fine-tuning
Conclusion
Key points

• **Symbolic** matrices are to **geometric** ML what **sparse** matrices are to **graph** processing:
 → KeOps: **x30 speed-up** vs. PyTorch, TF et JAX.
 → Useful in a wide range of settings.

• Optimal Transport = **generalized sorting**:
 → Simple registration for shapes that are close to each other.
 → Super-fast $O(N \log N)$ solvers.

• These tools open **new paths** for geometers and statisticians:
 → GPUs are more **versatile** than people think.
 → Ongoing work to provide **fast GPU backends** to researchers, going beyond what Google and Facebook are ready to pay for.
Summary: a long-term investment that is starting to bear fruits

Two major evolutions:

- “Big” geometric problem: \(N > 10k \rightarrow N > 1M. \)
- Optimal transport: linear problem + generalized quicksort.
Genuine team work

Alain Trouvé Thibault Séjourné F.-X. Vialard Gabriel Peyré

Benjamin Charlier Joan Glaunès Freyr Sverrisson Shen Zhengyang

+ Marc Niethammer, Bruno Correia, Michael Bronstein…
Going forward: the long road to genuine clinical impact

These tools are diffusing well in our research communities (500k+ downloads). The target is now to go beyond “expert users”.

First step in March 2022: removed all problematic dependencies from KeOps 2.0.

We are now working on:

- High performance on CPU.
- A 100% transparent and NumPy-compatible API for KeOps+GeomLoss.
- Standard benchmarks for kernel methods and optimal transport.
- Applications to drug consumption data from 70M French people with Anne-Sophie Jannot, Alexis Van Straaten and Pierre Sabatier.

I hope that we’ll have nice results to show you soon :-)
Documentation and tutorials are available online

www.kernel-operations.io

www.jeanfeydy.com/geometric_data_analysis.pdf
www.jeanfeydy.com/Teaching
References
Dimitri P Bertsekas.

A distributed algorithm for the assignment problem.

Grégoire Clarté, Antoine Diez, and Jean Feydy.

Collective proposal distributions for nonlinear MCMC samplers: Mean-field theory and fast implementation.

Christophe Chnafa, Simon Mendez, and Franck Nicoud.

Image-based large-eddy simulation in a realistic left heart.

Haili Chui and Anand Rangarajan.

A new algorithm for non-rigid point matching.

Adam Conner-Simons and Rachel Gordon.

Using ai to predict breast cancer and personalize care.

MIT CSAIL.

Marco Cuturi.

Sinkhorn distances: Lightspeed computation of optimal transport.

Pierre Degond, Amic Frouvelle, Sara Merino-Aceituno, and Ariane Trescases.

Alignment of self-propelled rigid bodies: from particle systems to macroscopic equations.

Pierre Degond and Sébastien Motsch.

Continuum limit of self-driven particles with orientation interaction.

Steven Gold, Anand Rangarajan, Chien-Ping Lu, Suguna Pappu, and Eric Mjolsness.

New algorithms for 2d and 3d point matching: Pose estimation and correspondence.

Leonid V Kantorovich.

On the translocation of masses.

Harold W Kuhn.

The Hungarian method for the assignment problem.

Jeffrey J Kosowsky and Alan L Yuille.

The invisible hand algorithm: Solving the assignment problem with statistical physics.

Florent Leclercq.

Bayesian optimization for likelihood-free cosmological inference.

Bruno Lévy.

A numerical algorithm for l2 semi-discrete optimal transport in 3d.

Christian Ledig, Andreas Schuh, Ricardo Guerrero, Rolf A Heckemann, and Daniel Rueckert.

Structural brain imaging in Alzheimer’s disease and mild cognitive impairment: biomarker analysis and shared morphometry database.

Quentin Mérigot.

A multiscale approach to optimal transport.

Bernhard Schmitzer.

Stabilized sparse scaling algorithms for entropy regularized transport problems.

Freyr Sverrisson, Jean Feydy, Bruno E. Correia, and Michael M. Bronstein.

Fast end-to-end learning on protein surfaces.