Geometric data analysis, beyond convolutions

Jean Feydy
Imperial College London

OPIS Inria team, online — January 2021.

Joint work with B. Charlier, J. Glaunès (numerical foundations),
T. Séjourné, F.-X. Vialard, G. Peyré (optimal transport theory),
P. Roussillon, P. Gori, A. Trouvé (applications to computational anatomy),
F. Sverrisson, B. E. Correia, M. Bronstein (applications to protein sciences).
Who am I?

2012–2016 ENS Paris, **mathematics** and applications.

2015 MVA thesis with **Siemens Healthcare** in Princeton.

2016–2019 PhD thesis with Alain Trouvé, **computational anatomy**;
 TA/tutor in applied maths at the ENS Paris.

2019–2022 PostDoc with Michael Bronstein, **geometric deep learning**.

Family of medical doctors (radiologist, haematologist, GPs...):
 strong motivation to work towards **clinical solutions**.

Make life easier for engineers and researchers in the field:
 two libraries (KeOps, GeomLoss) to **speed up geometric methods**,
 with new guarantees of **robustness**.
Today, we will talk about:

1. **KeOps**: fast geometry with *symbolic matrices*.
2. **Applications** to machine learning, proteins, maths...
3. **GeomLoss**: fast, robust and scalable *optimal transport*.
4. Scientific context, **future works**.
Symbolic matrices?
Machine learning libraries represent most objects as tensors

\[M[i, j] \]

Dense matrix

Coefficients only

Dense matrices – large, contiguous arrays of numbers:

+ **Convenient** and well supported.
 – Heavy load on the **memories** of our GPUs, with **time-consuming transfers** that take place between compute units.
Machine learning libraries represent most objects as tensors

\[M[i, j] \]

Dense matrix

- Coefficients only

Sparse matrix

- Coordinates + coeffs

Sparse matrices – tensors that have few non-zero entries:

+ Represent **large tensors** with a small memory footprint.

- Outside of **graph** processing, few objects are **sparse enough** to really benefit from this representation.
Machine learning libraries represent most objects as tensors

Dense matrix
Coefficients only

Sparse matrix
Coordinates + coeffs

Symbolic matrix
Formula + data

Distance and kernel matrices, point convolutions, attention layers:

+ Linear memory usage: no more memory overflows.
+ We can optimize the use of registers for a \(10\times100\) speed-up vs. a standard PyTorch GPU baseline.
We provide support for this “new abstraction” on the GPU

Our library comes with all the perks of a deep learning toolbox:

+ Transparent array-like interface.
+ Full support for automatic differentiation.
+ Comprehensive collection of tutorials, available online.

Under the hood: combines an optimized C++ engine with high-level binders for PyTorch, NumPy, Matlab and R (thanks to Ghislain Durif).
(We welcome contributors for JAX, Julia and other frameworks!)

To get started:
⇒ pip install pykeops ⇐
www.kernel-operations.io
A first example: efficient nearest neighbor search in dimension 50

Create large point clouds using **standard PyTorch syntax**:

```python
import torch
N, M, D = 10**6, 10**6, 50
x = torch.rand(N, 1, D).cuda()  # (1M, 1, 50) array
y = torch.rand(1, M, D).cuda()  # (1, 1M, 50) array
```

Turn `dense` arrays into `symbolic` matrices:

```python
from pykeops.torch import LazyTensor
x_i, y_j = LazyTensor(x), LazyTensor(y)
```

Create a large `symbolic matrix` of squared distances:

```python
D_ij = ((x_i - y_j)**2).sum(dim=2)  # (1M, 1M) symbolic
```

Use an `.argmin()` reduction to perform a nearest neighbor query:

```python
indices_i = D_ij.argmin(dim=1)  # -> standard torch tensor
```
The KeOps library combines performance with flexibility

Script of the previous slide = efficient nearest neighbor query, on par with the bruteforce CUDA scheme of the FAISS library...
And can be used with any metric!

\[
\begin{align*}
D_{ij} &= ((x_i - x_j)^2).sum(dim=2) \quad \# \text{Euclidean} \\
M_{ij} &= (x_i - x_j).abs().sum(dim=2) \quad \# \text{Manhattan} \\
C_{ij} &= 1 - (x_i \mid x_j) \quad \# \text{Cosine} \\
H_{ij} &= D_{ij} / (x_i[...,0] \times x_j[...,0]) \quad \# \text{Hyperbolic}
\end{align*}
\]

KeOps supports arbitrary formulas and variables with:

- **Reductions**: sum, log-sum-exp, K-min, matrix-vector product, etc.
- **Operations**: +, ×, sqrt, exp, neural networks, etc.
- **Advanced schemes**: batch processing, block sparsity, etc.
- **Automatic differentiation**: seamless integration with PyTorch.
KeOps lets users work with millions of points at a time

Benchmark of a matrix-vector product with a N-by-N Gaussian kernel matrix between 3D point clouds.

We run NumPy, PyTorch and KeOps on a RTX 2080 Ti GPU.

Number of points N

<table>
<thead>
<tr>
<th></th>
<th>NumPy (CPU)</th>
<th>PyTorch (GPU)</th>
<th>KeOps (GPU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

out of memory!
Applications
KeOps is a good fit for machine learning research

Use any kernel, metric or formula you like!

⇒ More tutorials coming up soon.
KeOps is a good fit for machine learning research

Spectral analysis. UMAP in hyperbolic space.

Use any kernel, metric or formula you like!

⇒ More tutorials coming up soon.
Applications to Kriging, spline, Gaussian process, kernel regression

A standard tool for regression [Lec18]:

Under the hood, solve a **kernel linear system**:

\[(\lambda \text{Id} + K_{xx})a = b\]

i.e.

\[a \leftarrow (\lambda \text{Id} + K_{xx})^{-1}b\]

where \(\lambda \geq 0\) and \((K_{xx})_{i,j} = k(x_i, x_j)\) is a positive definite matrix.
KeOps symbolic tensors:

- Can be fed to **standard solvers**: SciPy, GPytorch, etc.
- GPytorch on the 3D-Road dataset ($N = 278k$, $D = 3$):

 \[7h \text{ with 8 GPUs} \rightarrow 15mn \text{ with 1 GPU.} \]

- Provide a **fast backend for research codes**: see e.g. *Kernel methods through the roof: handling **billions of points** efficiently*, by G. Meanti, L. Carratino, L. Rosasco, A. Rudi (2020).
Data-driven methods on **point clouds** and **proteins**:

+ **Fast K-NN search**: local interactions.
+ **Fast N-by-N computations**: global interactions.
+ Heterogeneous **batches**, Octree-like acceleration.

Curvatures at all scales. **Quasi-geodesic convolutions**.
Applications to protein sciences [SFCB20]

(a) Raw protein data.
(b) Interface.
(c) Prediction.
(d) Chem. 1.
(e) Chem. 2.
(f) K at 1 Å.
(g) H at 10 Å.
Fast end-to-end learning on protein surfaces

1. MaSIF
 a. surface mesh
 b. features
 c. patches
 d. output

2. Ours
 a. points, normals
 b. features
 c. coordinates
 d. output

pre-processing on the fly

\(\times 100 - \times 1,000 \) faster, lighter and fully differentiable.
KeOps lets you focus on your models, results and theorems

Some applications to dynamical systems [DM08, DFMAT17] and statistics [CDF19] with A. Diez, G. Clarté and P. Degond:

3D Vicsek model with orientation, interactive demo with 2k flyers.

2D Vicsek model on the torus, in real-time with 100k swimmers.
KeOps lets you focus on your models, results and theorems

⇒ Scale up to millions/billions of agents with Python scripts.

Packing problem in 2D with 10k repulsive balls.

Collective Monte Carlo **sampling** on the hyperbolic Poincaré disk.
Fast, scalable and robust optimal transport solvers
The Wasserstein, Earth Mover’s distance

Sorting points in 1D:
The Wasserstein, Earth Mover’s distance

Sorting points in 1D:

source \(\delta_{x_1} \delta_{x_2} \delta_{x_3} \delta_{x_4} \delta_{x_5} \) target

\[
\text{OT}(\alpha, \beta) = \frac{1}{2} \sum_{i=1}^{N} |x_i - y_{\sigma^*}(i)|^2
\]

\[
\text{min} \sigma \in S_N \quad \frac{1}{2} \sum_{i=1}^{N} |x_i - y_{\sigma(i)}|^2
\]
The Wasserstein, Earth Mover’s distance

Sorting points in 1D:

Source

\[\delta_{x_1} \, \delta_{x_2} \, \delta_{x_3} \, \delta_{x_4} \, \delta_{x_5} \]

Target

\[\delta_{y_3} \, \delta_{y_5} \, \delta_{y_2} \, \delta_{y_4} \, \delta_{y_1} \]
The Wasserstein, Earth Mover’s distance

Sorting points in 1D:

\[
\sigma^* : [1, 5] \rightarrow [1, 5]
\]
The Wasserstein, Earth Mover’s distance

Sorting points in 1D:

assignment

\(\sigma^* : [1, 5] \rightarrow [1, 5]\)
The Wasserstein, Earth Mover’s distance

Sorting points in 1D:

assignment

\[\sigma^* : [1, 5] \rightarrow [1, 5] \]

\[
\begin{align*}
 \text{source} & \quad \delta_{x_1} \quad \delta_{x_2} \quad \delta_{x_3} \quad \delta_{x_4} \quad \delta_{x_5} \\
 \text{target} & \quad \delta_{y_3} \quad \delta_{y_5} \quad \delta_{y_2} \quad \delta_{y_4} \quad \delta_{y_1}
\end{align*}
\]

\[
\text{OT}(\alpha, \beta) = \frac{1}{2N} \sum_{i=1}^{N} |x_i - y_{\sigma^*(i)}|^2
\]
The Wasserstein, Earth Mover’s distance

Sorting points in 1D:

Assignment:

\(\sigma^* : [1, 5] \rightarrow [1, 5]\)

\[\text{OT}(\alpha, \beta) = \frac{1}{2N} \sum_{i=1}^{N} |x_i - y_{\sigma^*(i)}|^2 = \min_{\sigma \in \mathcal{S}_N} \frac{1}{2N} \sum_{i=1}^{N} |x_i - y_{\sigma(i)}|^2\]
Optimal transport generalizes sorting to $D > 1$

Minimize over N-by-M matrices (transport plans) π:

$$\text{OT}(\alpha, \beta) = \min_{\pi} \sum_{i,j} \pi_{i,j} \cdot \frac{1}{2} |x_i - y_j|^2$$

subject to $\pi_{i,j} \geq 0$,

$$\sum_j \pi_{i,j} = \alpha_i, \quad \sum_i \pi_{i,j} = \beta_j.$$
The Wasserstein loss $\text{OT}(\alpha, \beta)$ is:

- **Symmetric:** $\text{OT}(\alpha, \beta) = \text{OT}(\beta, \alpha)$.
- **Positive:** $\text{OT}(\alpha, \beta) \geq 0$.
- **Definite:** $\text{OT}(\alpha, \beta) = 0 \iff \alpha = \beta$.
- **Translation-aware:** $\text{OT}(\alpha, \text{Translate}_{\vec{v}}(\alpha)) = \frac{1}{2} \| \vec{v} \|^2$.
- More generally, OT retrieves the unique gradient of a convex function $T = \nabla \varphi$ that maps α onto β:

 In dimension 1, \hspace{1cm} \((x_i - x_j) \cdot (y_{\sigma(i)} - y_{\sigma(j)}) \geq 0\)

 In dimension D, \hspace{1cm} \langle x_i - x_j, T(x_i) - T(x_j) \rangle_{\mathbb{R}^D} \geq 0.

\implies Appealing generalization of an increasing mapping.
Clean gradients for registration and measure-fitting problems
Clean gradients for registration and measure-fitting problems

\[t = 0.25 \]
Clean gradients for registration and measure-fitting problems

\[t = 0.50 \]
Clean gradients for registration and measure-fitting problems

$t = 1.00$
Clean gradients for registration and measure-fitting problems
Clean gradients for registration and measure-fitting problems

\[t = 10.00 \]
Robust optimal transport: softening the bijectivity constraints

Standard OT: minimize over N-by-M transport plans π,

$$
\text{OT}(\alpha, \beta) = \min_{\pi} \langle \frac{1}{2}|x_i - y_j|^2, \pi \rangle \\
\text{s.t. } \pi \geq 0, \; \pi \mathbf{1} = \alpha, \; \pi^\top \mathbf{1} = \beta .
$$

When dealing with real-life data, we’d rather work with:

$$
\text{OT}_{\sigma, \rho}(\alpha, \beta) = \min_{\pi} \langle \frac{1}{2}|x_i - y_j|^2, \pi \rangle \\
+ \sigma^2 \text{KL}(\pi \mid \alpha \otimes \beta) + \rho^2 D(\pi \mathbf{1} \mid \alpha) + \rho^2 D(\pi^\top \mathbf{1} \mid \beta) .
$$

In the formula above:

- KL is the relative entropy.
- D may be the relative entropy, the total variation, etc.
We define the Sinkhorn divergence:

\[
S_{\sigma, \rho}(\alpha, \beta) = OT_{\sigma, \rho}(\alpha, \beta) - \frac{1}{2} OT_{\sigma, \rho}(\alpha, \alpha) - \frac{1}{2} OT_{\sigma, \rho}(\beta, \beta)
\]

\[
\approx OT^{\text{"lazy-}\rho"}(k_\sigma \ast \alpha, k_\sigma \ast \beta),
\]

where \(k_\sigma\) is a Gaussian kernel of deviation \(\sigma\) and our “lazy” particles do not move beyond a distance \(\rho\).

Theorem 1 (geometry): \(S_{\sigma, \rho}\) is suitable for gradient descent. It is **positive**, definite, **convex** and metrizes the convergence in law.

Theorem 2 (algorithm): We can implement \(S_{\sigma, \rho}\) efficiently, on GPUs. Two main ingredients: **log-convolution** with the Gaussian kernel \(k_\sigma\) and a **proximal operator** that is related to \(\rho^2 D(\cdot | \cdot)\).
How should we solve the OT problem?

Key dates for discrete optimal transport with N points:

- [Kan42]: **Dual** problem.
- [Kuh55]: **Hungarian** method in $O(N^3)$.
- [Ber79]: **Auction** algorithm in $O(N^2)$.
- [KY94]: **SoftAssign** = Sinkhorn + annealing, in $O(N^2)$.
- [GRL+98, CR00]: **Robust Point Matching** = Sinkhorn as a loss.
- [Cut13]: Start of the **GPU era**.
- [Mér11, Lév15, Sch19]: **Multiscale** solvers in $O(N \log N)$.
- Today: **Multiscale Sinkhorn algorithm, on the GPU.**

\implies Generalized **QuickSort** algorithm.
Progresses of the last decade add up to a $\times 100 - \times 1000$ acceleration:

Sinkhorn GPU $\times 10 \rightarrow$ + KeOps $\times 10 \rightarrow$ + Annealing $\times 10 \rightarrow$ + Multiscale

With a precision of 1%, on a modern gaming GPU:

10k points in 30-50ms

100k points in 100-200ms
Geometric Loss functions for PyTorch

Our website: www.kernel-operations.io/geomloss

⇒ pip install geomloss ⇐

Large point clouds in \([0,1]^3\)
import torch
x = torch.rand(100000, 3, requires_grad=True).cuda()
y = torch.rand(200000, 3).cuda()

Define a Wasserstein loss between sampled measures
from geomloss import SamplesLoss
loss = SamplesLoss(loss="sinkhorn", p=2)
L = loss(x, y) # By default, use constant weights

Soon: efficient support for images, meshes and generic metrics.
Ongoing work: computational anatomy

Fast OT-based registration with S. Joutard, X. Hao, A. Young from KCL, Z. Shen, M. Niethammer from UNC.

Diffeomorphic and spline registration e.g. Deformetrica LDDMM software with the Aramis Inria team.
Scientific context, future works
Genuine team work

Alain Trouvé Thibault Séjourné F.-X. Vialard Gabriel Peyré

Benjamin Charlier Joan Glaunès Pierre Roussillon Pietro Gori

+ Freyr Sverrisson, Bruno Correia, Michael Bronstein, ...
Promoting cross-field interactions

- Fluid Mechanics
- Information Geometry
- MRI/CT Industry
- End-users: Physicians, Neurologists, Biologists
- Riemannian Geometry
- Statistics
- Lie Groups Log-Demons
- Imaging Toolboxes
- Clinical Engineering
- LDDMM
- Pattern Theory
- Optimal Transport
- Computer Vision
Promoting cross-field interactions
The emergence of an open and modular ecosystem of scientific tools has been a boon to the community.

Deep learning frameworks have put GPU computing and automatic differentiation in the hands of every student. (Incredible!)

These libraries have attracted significant backing from industry players (Google, Facebook, ...) and allowed the field to boom over the last decade.
Interacting with other researchers, doctors and engineers has never been so easy.

But on the other hand, PyTorch and TensorFlow have also biased the field towards a small set of well-supported operations: convolutions and matrix-matrix products, mostly.

This design choice is not due to an intrinsic limitation of GPUs: our hardware is more than capable of simulating large, open 3D worlds in real-time!

As academic researchers, we must strive to keep other paths open. Foster the development of a full range of methods, from robust convex baselines to expensive deep learning pipelines.
Our contribution to the community

KeOps and GeomLoss are:

+ **Fast**: $\times 10 \times 1,000$ speedup vs. naive GPU implementations.
+ **Memory-efficient**: $O(N)$, not $O(N^2)$.
+ **Versatile, with a transparent interface**: freedom!
+ **Powerful and well-documented**: research-friendly.

− Slow with **large vectors** of dimension $D > 100$.

First half of 2021:

→ Approximation strategies (Nyström, etc.) in KeOps.
→ Wasserstein barycenters and grid images in GeomLoss.
Our contribution to the community

KeOps and GeomLoss are:

+ **Fast**: $\times 10 - \times 1,000$ speedup vs. naive GPU implementations.
+ **Memory-efficient**: $O(N)$, not $O(N^2)$.
+ **Versatile, with a transparent interface**: freedom!
+ **Powerful and well-documented**: research-friendly.

 – Slow with **large vectors** of dimension $D > 100$.

First half of 2021:

→ **Approximation strategies** (Nyström, etc.) in KeOps.
→ **Wasserstein barycenters** and **grid images** in GeomLoss.
An ongoing research project

Roadmap for KeOps + GeomLoss:

2017–18 **Proof of concept** with conference papers, online codes.
 Get first feedback from the community.

2019–20 **Stable library** with solid theorems, a well-documented API.
 KeOps backends for high-level packages.

2021–22 **Mature library** with focused application papers, full tutorials.
 Works out-of-the-box for students and engineers.

2022+ **A standard toolbox**, with genuine clinical applications?
 That’s the target!
Conclusion
Key points

• **Symbolic** matrices are to **geometric** ML what **sparse** matrices are to **graph** processing:
 → KeOps, **x30 speed-up** vs. PyTorch, TF and JAX.
 → Useful in a wide range of settings.

• Optimal Transport = **generalized sorting**:
 → Geometric gradients.
 → Super-fast $O(N \log N)$ solvers.

• These tools open **new paths** for geometers and statisticians:
 → GPUs are more **versatile** than you think.
 → Ongoing work to provide **fast GPU backends** to researchers
 – going beyond what Google and Facebook are ready to pay for.
We believe that KeOps and GeomLoss will stimulate research on:

- **Clustering** methods: fast K-Means and EM iterations.
- Data **representation**: UMAP, fast KNN graphs with any metric.
- **Kernel** methods: kernel matrices.
- **Gaussian** processes: covariance matrices.
- **Geometric** deep learning: point convolutions.
- **Medical imaging**: computational anatomy.
- Geometric **statistics**: going beyond Euclidean models.
- Natural **language** processing: transformer networks?

What do you think?
Documentation and tutorials are available online

⇒ www.kernel-operations.io ⇐

Geometric data analysis, beyond convolutions

www.jeanfeydy.com/geometric_data_analysis.pdf
Dimitri P Bertsekas.
A distributed algorithm for the assignment problem.

Y. Brenier.
Polar factorization and monotone rearrangement of vector-valued functions.

Grégoire Clarté, Antoine Diez, and Jean Feydy.
Collective proposal distributions for nonlinear MCMC samplers: Mean-field theory and fast implementation.
Haili Chui and Anand Rangarajan.

A new algorithm for non-rigid point matching.

Marco Cuturi.

Sinkhorn distances: Lightspeed computation of optimal transport.

Pierre Degond, Amic Frouvelle, Sara Merino-Aceituno, and Ariane Trescases.
Alignment of self-propelled rigid bodies: from particle systems to macroscopic equations.

Pierre Degond and Sébastien Motsch.
Continuum limit of self-driven particles with orientation interaction.
Steven Gold, Anand Rangarajan, Chien-Ping Lu, Suguna Pappu, and Eric Mjolsness.

New algorithms for 2d and 3d point matching: Pose estimation and correspondence.

Leonid V Kantorovich.

On the translocation of masses.

Harold W Kuhn.

The Hungarian method for the assignment problem.

Jeffrey J Kosowsky and Alan L Yuille.
The invisible hand algorithm: Solving the assignment problem with statistical physics.

Florent Leclercq.
Bayesian optimization for likelihood-free cosmological inference.
Bruno Lévy.

A numerical algorithm for l2 semi-discrete optimal transport in 3d.

Quentin Mérigot.

A multiscale approach to optimal transport.

Bernhard Schmitzer.
Stabilized sparse scaling algorithms for entropy regularized transport problems.

Freyr Sverrisson, Jean Feydy, Bruno E. Correia, and Michael M. Bronstein.
Fast end-to-end learning on protein surfaces.