Optimal transport: mature tools and open problems

Jean Feydy
HeKA team, Inria Paris
Inserm, Université Paris-Cité

25th of August, 2022
Seminar on mathematical imaging and surface processing
Oberwolfach
My motivation: speeding up core computations for healthcare

Computational anatomy. 3D medical scans are orders of magnitude heavier than natural 2D images:

- 100k triangles to represent a brain surface.
- $512 \times 512 \times 512 \approx 130$M voxels for a typical 3D image.

Public health. Over the last decade, medical datasets have **blown up**:

- Clinical trials: *1k patients*, controlled environment.
- UK Biobank: *500k people*, curated data.
- French Health Data Hub: *70M people*, full social security data since ~2000.

Medical doctors, pharmacists and governments need scalable methods.
A field that is moving fast

Target. Scale up models that combine medical expertise with modern datasets.

Context. The advent of Graphics Processing Units (GPU):

- Incredible value for money:
 \[1000\text{€} \approx 1000 \text{ cores} \approx 10^{12} \text{ operations/s.} \]
- Bottleneck: constraints on register usage.

“User-friendly” Python ecosystem, consolidated around a small number of key operations.

7,000 cores in a single GPU.
The KeOps library: efficient support for symbolic matrices

Symbolic matrix
Formula + data

- Distances $d(x_i,y_j)$.
- Kernel $k(x_i,y_j)$.
- Numerous transforms.

Solution. KeOps – www.kernel-operations.io:

- For PyTorch, NumPy, Matlab and R, on CPU and GPU.
- Automatic differentiation.
- Just-in-time compilation of optimized C++ schemes, triggered for every new reduction: sum, min, etc.

If the formula “F” is simple (≤ 100 arithmetic operations):

- “$100k \times 100k$” computation \rightarrow 10ms – 100ms,
- “$1M \times 1M$” computation \rightarrow 1s – 10s.

Hardware ceiling of 10^{12} operations/s.

$\times 10$ to $\times 100$ speed-up vs standard GPU implementations for a wide range of problems.
A long-term investment in the foundations of our field

Since 2016, I’ve been working on speeding up:

- Geometric **machine learning**: K-Nearest Neighbors, kernel methods.
- Geometric **statistics**: Gaussian processes, Maximum Mean Discrepancies.
- Geometric **deep learning**: point convolutions, attention layers.
- **Survival** analysis: CoxPH solvers, time-varying features.
- **Optimal transport**: our focus today!
Today’s talk

1. What is Optimal Transport, and why does it matter?
2. Computational advances.
3. How people use OT today.
4. What about the future?
Optimal transport?
Optimal transport (OT) generalizes sorting to spaces of dimension $D \geq 1$

If $A = (x_1, \ldots, x_N)$ and $B = (y_1, \ldots, y_N)$
are two clouds of N points in \mathbb{R}^D, we define:

$$ OT(A, B) = \min_{\sigma \in \mathcal{S}_N} \frac{1}{2N} \sum_{i=1}^{N} \| x_i - y_{\sigma(i)} \|^2 $$

Generalizes sorting to metric spaces.

Linear problem on the permutation matrix P:

$$ OT(A, B) = \min_{P \in \mathbb{R}^{N \times N}} \frac{1}{2N} \sum_{i,j=1}^{N} P_{i,j} \cdot \| x_i - y_j \|^2, $$

s.t. $P_{i,j} \geq 0$

$$ \sum_{j} P_{i,j} = 1 \quad \sum_{i} P_{i,j} = 1. $$

Each source point is transported onto the target.

assignment

$\sigma : [1, 5] \rightarrow [1, 5]$
Practical use

Alternatively, we understand OT as:

- Nearest neighbor projection + incompressibility constraint.
- Fundamental example of linear optimization over the transport plan $P_{i,j}$.

This theory induces two main quantities:

- The transport plan $P_{i,j} \simeq$ the optimal mapping $x_i \mapsto y_{\sigma(i)}$.
- The “Wasserstein” distance $\sqrt{\text{OT}(A, B)}$.
The optimal transport plan

Before

After
OT induces a geometry-aware distance between probability distributions [PC18]

Gauss map $\mathcal{N} : (m, \sigma) \in \mathbb{R} \times \mathbb{R}_{\geq 0} \mapsto \mathcal{N}(m, \sigma) \in \mathbb{P}(\mathbb{R})$.

If the space of **probability distributions** $\mathbb{P}(\mathbb{R})$ is endowed with a given metric, what is the "pull-back" geometry on the space of **parameters** (m, σ)?

Fisher-Rao (\simeq relative entropy) on $\mathcal{N}(m, \sigma)$

\rightarrow Hyperbolic Poincaré metric on (m, σ).

OT on $\mathcal{N}(m, \sigma)$

\rightarrow Flat Euclidean metric on (m, σ).
Geometric solutions to least square problems [AC11]

Barycenter $A^* = \arg\min_{A} \sum_{i=1}^{4} \lambda_i \text{Loss}(A, B_i)$.

Euclidean barycenters.

Loss(A, B) = $\|A - B\|^2_{L^2}$

Wasserstein barycenters.

Loss(A, B) = OT(A, B)
How should we solve the OT problem?
A fundamental problem in applied mathematics

Key dates for discrete optimal transport with N points:

- [Kan42]: **Dual** problem of Kantorovitch.
- [Kuh55]: **Hungarian** methods in $O(N^3)$.
- [Ber79]: **Auction** algorithm in $O(N^2)$.
- [KY94]: **SoftAssign** = Sinkhorn + simulated annealing, in $O(N^2)$.
- [GRL+98, CR00]: **Robust Point Matching** = Sinkhorn as a loss.
- [Cut13]: Start of the **GPU era**.
- [Mér11, Lév15, Sch19]: **multi-scale** solvers in $O(N \log N)$.

- **Solution**, today: **Multiscale Sinkhorn algorithm, on the GPU**.

 \implies Generalized **QuickSort** algorithm.
Scaling up optimal transport to anatomical data

Progresses of the last decade add up to a $\times 100 - \times 1000$ acceleration:

Sinkhorn GPU $\times 10$ \rightarrow + KeOps $\times 10$ \rightarrow + Annealing $\times 10$ \rightarrow + Multi-scale

With a precision of 1%, on a gaming GPU:

```
pip install geomloss
```

+ modern GPU (1 000 €)

10k points in 30-50ms

100k points in 100-200ms
How do people use OT in 2022?
Since the 1990s, OT is an essential tool to deal with flows:

- Fundamental models have an appealing form when seen through the OT lense: the incompressible Euler flow is a geodesic trajectory, heat diffusion is a gradient descent…

- This framework allows mathematicians to design and study new models effectively.

- Implementations in 2D and 3D are now becoming mature.

- Lots of cool simulations of crowds, water or the early universe!

Pointers: MoKaPlan Inria team, Bruno Lévy, Quentin Mérigot, Filippo Santambrogio, Yann Brenier, Felix Otto…
2. An intriguing tool in machine learning

OT lifts to probability distributions the geometry of the sample space $\|x_i - y_j\|$.

This is relevant at the intersection between geometry and statistics in order to:

- Design 2-sample tests: do these two samples come from the same distribution?
- Quantify the discrepancy between a synthetic sample and the data distribution.
- Study the convergence of particle-based optimization schemes, from simple neural networks to MCMC samplers.

Pointers: Python Optimal Transport (Flamary, Courty et al.), Computational Optimal Transport (Peyré and Cuturi), Jonathan Weed, Justin Solomon, Philippe Rigollet, Lenaïc Chizat, Anna Korba…
3. A typical example in shape analysis: lung registration “Exhale – Inhale”

Complex deformations, high resolution (50k–300k points), high accuracy (< 1mm).
State-of-the-art networks – and their limitations

Point neural nets, **in practice:**
- Compute **descriptors** at all scales.
- **Match** them using geometric layers.
- Train on **synthetic** deformations.

Strengths and weaknesses:
- Good at **pairing** branches.
- Hard to train to high **accuracy**.

⇒ **Complementary** to OT.
Three-steps registration with Robust OT (RobOT)

1. Affine-RobOT pre-alignment.
2.a. Deep prediction network.
2.b. Smooth deformation model.

This pragmatic method:

- Is easy to train on synthetic data.
- Scales up to high-resolution: 100k points in 1s.
- Excellent results: KITTI (outdoors scans) and DirLab (lungs).

Accurate point cloud registration with robust optimal transport,
Three-steps registration

0. Input data
1. Pre-alignment
2. Deep registration
3. Fine-tuning
What about the future?
Some open problems

1. Can we generalize standard ML algorithms from vector spaces to a (non-linear) space of probability distributions?

2. What about distances on graphs? What about non-convex costs, e.g. $\sqrt{\|x_i - y_j\|}$?

3. Can we enforce some spatial regularity while keeping super-fast solvers?

4. OT as a source of inspiration in high-dimension: can we design robust geometric distances between distributions?
My job: pave the way for a new generation of researchers

1. **Secure** a permanent position.

2. Shore up the **GPU foundations** of the field.
 → KeOps v2.0 released in March 2022, now seamless to install.

3. **Re-write GeomLoss** with a better interface and full support for 2D/3D images.
 → WIP with the Python Optimal Transport devs, first release very soon.

4. Maintain an **open benchmarking platform** for the community,
 following the example of www.ann-benchmarks.com for nearest neighbor search.
 → WIP, release this Fall.
Conclusion
Genuine teamwork

Alain Trouvé
Thibault Séjourné
F.-X. Vialard
Gabriel Peyré
Benjamin Charlier
Joan Glaunès
Marc Niethammer
Shen Zhengyang
Key points

• **Symbolic** matrices are to **geometric** ML what **sparse** matrices are to **graph** processing:
 → KeOps: **x30 speed-up** vs. PyTorch, TF et JAX.
 → Useful in a wide range of settings.

• Optimal Transport = **generalized sorting** = **incompressibility** prior:
 → Super-fast solvers on simple domains (especially 2D/3D spaces).
 → Fundamental tool at the intersection of geometry and statistics.

• GPUs are more **versatile** than you think.
 → Ongoing work to provide **fast GPU backends** to researchers, going beyond what Google and Facebook are ready to pay for.
Documentation and tutorials are available online

www.kernel-operations.io
References
M. Agueh and G. Carlier.

Barycenters in the Wasserstein space.

Dimitri P Bertsekas.

A distributed algorithm for the assignment problem.

Haili Chui and Anand Rangarajan.

A new algorithm for non-rigid point matching.

Marco Cuturi.

Sinkhorn distances: Lightspeed computation of optimal transport.

Steven Gold, Anand Rangarajan, Chien-Ping Lu, Suguna Pappu, and Eric Mjolsness.

New algorithms for 2d and 3d point matching: Pose estimation and correspondence.

Leonid V Kantorovich.

On the translocation of masses.

Harold W Kuhn.

The Hungarian method for the assignment problem.

Jeffrey J Kosowsky and Alan L Yuille.

The invisible hand algorithm: Solving the assignment problem with statistical physics.

Bruno Lévy.

A numerical algorithm for l2 semi-discrete optimal transport in 3d.

Quentin Mérigot.

A multiscale approach to optimal transport.

Gabriel Peyré and Marco Cuturi.

Computational optimal transport.

Bernhard Schmitzer.

Stabilized sparse scaling algorithms for entropy regularized transport problems.