Computational optimal transport: recent speed-ups and applications

Jean Feydy
HeKA team, Inria Paris
Inserm, Université Paris-Cité

11th of July, 2024
SciML 2024, Université de Strasbourg
Who am I?

Background in **mathematics** and **data sciences**:

2014–2015 M2 mathematics, vision, learning at ENS Cachan.

2016–2019 PhD thesis in **medical imaging** with Alain Trouvé at ENS Cachan.

2019–2021 **Geometric deep learning** with Michael Bronstein at Imperial College.

2021+ **Medical data analysis** in the HeKA INRIA team (Paris).
HeKA: a translational research team for public health

Hôpitaux
Inria Inserm
Universités
Develop robust and efficient software that stimulates other researchers:

1. Speed up geometric machine learning on GPUs:
 ⟷ pyKeOps library for distance and kernel matrices, 600k+ downloads.

2. Scale up pharmacovigilance to the full French population:
 ⟷ survivalGPU, a fast re-implementation of the R survival package.

3. Ease access to modern statistical shape analysis:
 ⟷ GeomLoss, truly scalable optimal transport in Python.
 ⟷ scikit-shapes, alpha release now available.
Today’s talk – assuming that you would enjoy some nice simulations

1. A quick heads up on fast geometric methods.
2. Efficient discrete optimal transport solvers.
3. New applications for systems of incompressible particles.
How to code a N-body simulation?
Scientific computing libraries represent most objects as tensors

Context. Constrained **memory accesses** on the GPU:

- **Long access times** to the registers penalize the use of large **dense** arrays.
- Hard-wired **contiguous** memory accesses penalize the use of **sparse** matrices.

Challenge. In order to reach optimal run times:

- **Restrict** ourselves to operations that are supported by the constructor: convolutions, FFT, etc.
- Develop new routines from scratch in C++/CUDA (FAISS, KPConv…): **several months of work**.
The KeOps library: efficient support for symbolic matrices

Solution. KeOps – www.kernel-operations.io:

- For PyTorch, NumPy, Matlab and R, on CPU and GPU.
- **Automatic differentiation.**
- Just-in-time **compilation** of optimized C++ schemes, triggered for every new **reduction**: sum, min, etc.

If the formula “F” is simple (≤ 100 arithmetic operations):
- “$100k \times 100k$” computation \rightarrow 10ms – 100ms,
- “$1M \times 1M$” computation \rightarrow 1s – 10s.

Hardware ceiling of 10^{12} operations/s.
$\times 10$ to $\times 100$ **speed-up** vs standard GPU implementations
for a wide range of problems.

Symbolic matrix
Formula + data

- Distances $d(x_i, y_j)$.
- Kernel $k(x_i, y_j)$.
- Numerous transforms.
A first example: efficient nearest neighbor search in dimension 50

Create large point clouds using **standard PyTorch syntax**:

```python
import torch
N, M, D = 10**6, 10**6, 50
x = torch.rand(N, 1, D).cuda()  # (1M, 1, 50) array
y = torch.rand(1, M, D).cuda()  # (1, 1M, 50) array
```

Turn **dense** arrays into **symbolic** matrices:

```python
from pykeops.torch import LazyTensor
x_i, y_j = LazyTensor(x), LazyTensor(y)
```

Create a large **symbolic matrix** of squared distances:

```python
D_ij = ((x_i - y_j) ** 2).sum(dim=2)  # (1M, 1M) symbolic
```

Use an `.argmin()` **reduction** to perform a nearest neighbor query:

```python
indices_i = D_ij.argmin(dim=1)  # -> standard torch tensor
```
The KeOps library combines performance with flexibility

Script of the previous slide = efficient nearest neighbor query, **on par** with the bruteforce CUDA scheme of the *FAISS* library...

And can be used with **any metric**!

\[
\begin{align*}
D_{ij} &= ((x_i - x_j)^2).\text{sum}(\text{dim}=2) \quad \# \text{ Euclidean} \\
M_{ij} &= (x_i - x_j).\text{abs}().\text{sum}(\text{dim}=2) \quad \# \text{ Manhattan} \\
C_{ij} &= 1 - (x_i \mid x_j) \quad \# \text{ Cosine} \\
H_{ij} &= D_{ij} / (x_i[:,0] \times x_j[:,0]) \quad \# \text{ Hyperbolic}
\end{align*}
\]

KeOps supports arbitrary **formulas** and **variables** with:

- **Reductions**: sum, log-sum-exp, K-min, matrix-vector product, etc.
- **Operations**: +, ×, sqrt, exp, neural networks, etc.
- **Advanced schemes**: batch processing, block sparsity, etc.
- **Automatic differentiation**: seamless integration with PyTorch.
KeOps lets users work with millions of points at a time

Benchmark of a Gaussian convolution \(a_i \leftarrow \sum_{j=1}^{N} \exp(-\|x_i - y_j\|_{\mathbb{R}^3}^2) b_j \)

between clouds of N 3D points on a A100 GPU.
Yet another ML compiler?

Many impressive tools out there (Taichi, Numba, Triton, Halide…):

- Focus on **generality** (software + hardware).
- Increasingly easy to use via e.g. PyTorch 2.0.

KeOps fills a different niche (a bit like cuFFT, FFTW…):

- Focus on a **single major bottleneck**: geometric interactions.
- **Agnostic** with respect to Euclidean / non-Euclidean formulas.
- Fully compatible with PyTorch, NumPy, R.
- Can actually be **used by mathematicians**.

KeOps is a **bridge** between geometers (with a maths background) and compiler experts (with a CS background).
Optimal transport?
Optimal transport (OT) generalizes sorting to spaces of dimension $D > 1$

If $A = (x_1, \ldots, x_N)$ and $B = (y_1, \ldots, y_N)$ are two clouds of N points in \mathbb{R}^D, we define:

$$\text{OT}(A, B) = \min_{\sigma \in \mathcal{S}_N} \frac{1}{2N} \sum_{i=1}^{N} \| x_i - y_{\sigma(i)} \|^2$$

Generalizes **sorting** to metric spaces.

Linear problem on the permutation matrix P:

$$\text{OT}(A, B) = \min_{P \in \mathbb{R}^{N \times N}} \frac{1}{2N} \sum_{i,j=1}^{N} P_{i,j} \cdot \| x_i - y_j \|^2,$$

s.t. $P_{i,j} \geq 0$ \quad $\sum_j P_{i,j} = 1$ \quad $\sum_i P_{i,j} = 1$.

Each source point is transported onto the target.

Assignment \ $\sigma : [1, 5] \to [1, 5]$
Alternatively, we understand OT as:

- Nearest neighbor \textit{projection} + \textit{incompressibility} constraint.
- Fundamental example of \textit{linear optimization} over the transport plan $P_{i,j}$.

This theory induces two main quantities:

- The transport plan $P_{i,j} \simeq$ the optimal mapping $x_i \mapsto y_{\sigma(i)}$.
- The “Wasserstein” distance $\sqrt{\text{OT}(A, B)}$.
The optimal transport plan

Before

After
Gauss map $\mathcal{N} : (m, \sigma) \in \mathbb{R} \times \mathbb{R}_{\geq 0} \mapsto \mathcal{N}(m, \sigma) \in \mathbb{P}(\mathbb{R})$.

If the space of probability distributions $\mathbb{P}(\mathbb{R})$ is endowed with a given metric, what is the “pull-back” geometry on the space of parameters (m, σ)?

- Fisher-Rao (\simeq relative entropy) on $\mathcal{N}(m, \sigma) \rightarrow$ Hyperbolic Poincaré metric on (m, σ).
- OT on $\mathcal{N}(m, \sigma) \rightarrow$ Flat Euclidean metric on (m, σ).
How to solve the OT problem?
Duality: central planning with NM variables \simeq outsourcing with N + M variables

$$\text{OT}(A, B) = \min_\pi \langle \pi, C \rangle, \quad \text{with } C(x_i, y_j) = \frac{1}{p}\|x_i - y_j\|^p$$ \[\rightarrow\] Assignment

s.t. $\pi \geq 0, \quad \pi 1 = A, \quad \pi^T 1 = B$

$$\sum_{i,j} \pi_{i,j} C(x_i, y_j)$$
Duality: central planning with NM variables \(\simeq \) outsourcing with \(N + M \) variables

\[
\text{OT}(A, B) = \min_{\pi} \langle \pi, C \rangle, \quad \text{with} \quad C(x_i, y_j) = \frac{1}{p} \|x_i - y_j\|^p
\]

\[
\text{s.t.} \quad \pi \geq 0, \quad \pi^T 1 = A, \quad \pi^T 1 = B
\]

\[
\sum_{i,j} \pi_{i,j} C(x_i, y_j)
\]

\[
\max_{f, g} \quad \langle A, f \rangle + \langle B, g \rangle
\]

\[
\text{s.t.} \quad f(x_i) + g(y_j) \leq C(x_i, y_j),
\]

\[
\sum_i \alpha_i f_i + \sum_j \beta_j g_j
\]

\[
\rightarrow \quad \text{FedEx}
\]
Duality: central planning with NM variables ≃ outsourcing with N + M variables

\[
\text{OT}(A, B) = \min_{\pi} \langle \pi, C \rangle, \quad \text{with } C(x_i, y_j) = \frac{1}{p} \|x_i - y_j\|^p
\]

\[
\begin{align*}
\text{s.t. } \pi &\geq 0, \\
\pi 1 &= A, \\
\pi^T 1 &= B
\end{align*}
\]

\[
\sum_{i,j} \pi_{i,j} C(x_i, y_j)
\]

\[
= \max_{f, g} \langle A, f \rangle + \langle B, g \rangle
\]

\[
\text{s.t. } f(x_i) + g(y_j) \leq C(x_i, y_j)
\]

\[
\sum_i \alpha_i f_i + \sum_j \beta_j g_j
\]

→ Assignment

→ FedEx
Being too greedy... doesn’t work!

\[
OT(\alpha, \beta) = \max_{(f_i) \in \mathbb{R}^N, (g_j) \in \mathbb{R}^M} \sum_{i=1}^{N} \alpha_i f_i + \sum_{j=1}^{M} \beta_j g_j \\
\text{s.t. } \forall i, j, f_i + g_j \leq C(x_i, y_j)
\]

Algorithm 3.1: Naive greedy algorithm

1: \(f_i, g_j \leftarrow 0_{\mathbb{R}^N}, 0_{\mathbb{R}^M} \)
2: **repeat**
3: \(f_i \leftarrow \min_{j=1}^{M} [C(x_i, y_j) - g_j] \)
4: \(g_j \leftarrow \min_{i=1}^{N} [C(x_i, y_j) - f_i] \)
5: **until** convergence.
6: **return** \(f_i, g_j \)
The auction algorithm: take it easy with a slackness $\varepsilon > 0$

$$OT(\alpha, \beta) = \max_{(f_i) \in \mathbb{R}^N} \sum_{i=1}^{N} \alpha_i f_i + \max_{(g_j) \in \mathbb{R}^M} \sum_{j=1}^{M} \beta_j g_j$$
\[
\text{s.t. } \forall i, j, f_i + g_j \leq C(x_i, y_j)
\]

Algorithm 3.2: Pseudo-auction algorithm

1. $f_i, g_j \leftarrow 0_{\mathbb{R}^N}, 0_{\mathbb{R}^M}$
2. repeat
3. $f_i \leftarrow \min_{j=1}^{M} \left[C(x_i, y_j) - g_j \right] - \varepsilon$
4. $g_j \leftarrow \min_{i=1}^{N} \left[C(x_i, y_j) - f_i \right]$
5. until $\forall i, \exists j, f_i + g_j \geq C(x_i, y_j) - \varepsilon$
6. return f_i, g_j
The Sinkhorn algorithm: use a softmin, get a well-defined optimum

$$\text{OT}(\alpha, \beta) = \max_{(f_i) \in \mathbb{R}^N} \sum_{i=1}^{N} \alpha_i f_i + \sum_{j=1}^{M} \beta_j g_j$$

$$- \varepsilon \log \left(\alpha_i \otimes \beta_j, \exp \frac{1}{\varepsilon} [f_i \oplus g_j - C_{ij}] \right)$$

Algorithm 3.3: Sinkhorn or “soft-auction” algorithm

1. $f_i, g_j \leftarrow 0_{\mathbb{R}^N}, 0_{\mathbb{R}^M}$
2. repeat
3. $f_i \leftarrow -\varepsilon \log \sum_{j=1}^{M} \beta_j \exp \frac{1}{\varepsilon} [g_j - C(x_i, y_j)]$
4. $g_j \leftarrow -\varepsilon \log \sum_{i=1}^{N} \alpha_i \exp \frac{1}{\varepsilon} [f_i - C(x_i, y_j)]$
5. until convergence up to a set tolerance.
6. return f_i, g_j
The symmetric Sinkhorn algorithm: stay close to the diagonal if $A \simeq B$
Remark 1: a streamlined algorithm

One key operation – the soft, **weighted distance transform**:

$$\forall i \in [1, N], \quad f(x_i) \leftarrow \min_{y \sim \beta} \left[C(x_i, y) - g(y) \right] = -\varepsilon \log \sum_{j=1}^{M} \beta_j \exp \frac{1}{\varepsilon} \left[g_j - C(x_i, y_j) \right].$$

Similar to the chamfer distance transform, convolution with a Gaussian kernel...

Fast implementations with **pyKeOps**:

- If $C(x_i, y_j)$ is a closed formula: **brute-force** scales to $N, M \approx 100k$ in 10ms on a GPU.
- If A and B have a low-dimensional support:
 use a clustering and **truncation** strategy to get a x10 speed-up.
- If A and B are supported on a 2D or 3D grid and $C(x_i, y_j) = \frac{1}{2} \| x_i - y_j \|^2$:
 use a **separable** distance transform to get a second x10 speed-up.
 (N.B.: FFTs run into numerical accuracy issues.)
Remark 2: annealing works!

The Auction/Sinkhorn algorithms:

- Improve the dual cost by at least ε at each (early) step.
- Reach an ε-optimal solution with $(\max C) / \varepsilon$ steps.

Simple heuristic: run the optimization with decreasing values of ε.

ε-scaling

$= \text{simulated annealing}$

$= \text{multiscale} \text{ strategy}$

$= \text{divide and conquer}$
Remark 3: the curse of dimensionality

In low dimension:
- \(\|x - y\|\) takes large and small values.
- The OT objective is peaky wrt. \(\pi\).
- \(\varepsilon\)-optimal solutions are useful.
- \(\text{OT (discrete samples)} \simeq \text{OT (underlying distributions)}\)

In high dimension:
- \(\|x - y\|\) gets closer to a constant.
- The OT objective is flat wrt. \(\pi\).
- \(\varepsilon\)-optimal solutions are random.
- \(\text{OT (discrete samples)} \neq \text{OT (underlying distributions)}\)
To recap 80+ years of work...

Key dates for discrete optimal transport with N points:

- [Kan42]: Dual problem of Kantorovitch.
- [Kuh55]: Hungarian methods in $O(N^3)$.
- [Ber79]: Auction algorithm in $O(N^2)$.
- [KY94]: SoftAssign = Sinkhorn + simulated annealing, in $O(N^2)$.
- [GRL$^+$98, CR00]: Robust Point Matching = Sinkhorn as a loss.
- [Cut13]: Start of the GPU era.
- [Mér11, Lév15, Sch19]: multi-scale solvers in $O(N \log N)$.

- **Solution**, today: Multiscale Sinkhorn algorithm, on the GPU.

 \implies Generalized QuickSort algorithm.
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i$ OT(α, β)
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial_x x_i$ $\text{OT}(\alpha, \beta)$

Iteration 0, blur $\sigma = \sqrt{\varepsilon} = 2^0$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i \text{ OT}(\alpha, \beta)$

Iteration 1, blur $\sigma = \sqrt{\varepsilon} = 2^{-1}$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i \text{OT}(\alpha, \beta)$

Iteration 2, blur $\sigma = \sqrt{\varepsilon} = 2^{-2}$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i \text{OT}(\alpha, \beta)$

Iteration 3, blur $\sigma = \sqrt{\varepsilon} = 2^{-3}$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i \text{OT}(\alpha, \beta)$

Iteration 4, blur $\sigma = \sqrt{\epsilon} = 2^{-4}$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i \text{OT}(\alpha, \beta)$

Iteration 5, blur $\sigma = \sqrt{\epsilon} = 2^{-5}$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i \text{OT}(\alpha, \beta)$

Iteration 6, blur $\sigma = \sqrt{\varepsilon} = 2^{-6}$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i \text{ OT}(\alpha, \beta)$

Iteration 7, blur $\sigma = \sqrt{\varepsilon} = \cdot 01$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i \text{OT}(\alpha, \beta)$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i \text{OT}(\alpha, \beta)$

Iteration 1, blur $\sigma = 2^{-1}$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i \text{OT}(\alpha, \beta)$

Iteration 2, blur $\sigma = 2^{-2}$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i \text{OT}(\alpha, \beta)$

Iteration 3, blur $\sigma = 2^{-3}$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i \text{OT}(\alpha, \beta)$

Iteration 4, blur $\sigma = 2^{-4}$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial_x \text{OT}(\alpha, \beta)$

Iteration 5, blur $\sigma = 2^{-5}$
Visualizing F, G and the Brenier map $\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i \text{OT}(\alpha, \beta)$

Iteration 6, blur $\sigma = 2^{-6}$
Visualizing F, G and the Brenier map

$$\nabla F(x_i) = -\frac{1}{\alpha_i} \partial x_i \text{ OT}(\alpha, \beta)$$

Iteration 7, blur $\sigma = .01$
Scaling up optimal transport to anatomical data

Progresses of the last decade add up to a $\times 100 - \times 1000$ acceleration:

Sinkhorn GPU $\rightarrow^\times 10$ + KeOps $\rightarrow^\times 10$ + Annealing $\rightarrow^\times 10$ + Multi-scale

With a precision of 1%, on a modern gaming GPU:

```
pip install geomloss
+ modern GPU (1 000 €)
```

10k points in 30-50ms

100k points in 100-200ms
A typical example in anatomy: lung registration “Exhale – Inhale”

Complex deformations, high resolution (50k–300k points), high accuracy (< 1mm).
Three-steps registration

0. Input data 1. Pre-alignment Zoom ! 2. Deep registration 3. Fine-tuning
Wasserstein barycenters [AC11]

Barycenter $A^* = \arg \min_A \sum_{i=1}^{4} \lambda_i \text{Loss}(A, B_i)$.

Euclidean barycenters.

Loss$(A, B) = \|A - B\|_{L^2}^2$

Wasserstein barycenters.

Loss$(A, B) = \text{OT}(A, B)$
Wasserstein barycenters

From a computational perspective:

- The problem is **convex** (easy) wrt. the weights.
- The support of the barycenter lies in the **convex hull** of the input distributions.

The **curse of dimensionality** hits hard:

- In high dimension, identifying the support can become **NP-hard**.
- In dimensions 2 and 3, we can just use a grid and recover **super fast** algorithms.
 Computing OT distances and barycenters between **density maps** is a solved problem.

\[\rightarrow\] We can now **easily** do manifold learning (= non-linear Model Order Reduction) in Wasserstein spaces of **2D and 3D** distributions.
An example: Anna Song’s exploration of 3D shape textures [Son22]
Incompressible particles
Two very talented postdocs

Maciej Buze
Heriot-Watt University

Antoine Diez
Kyoto University
Original motivation: the N-body problem [Pri11]
Coding a simple fluid simulation is now a matter of hours [Lag23]
The material point method: Disney’s Frozen [SSC+13]
How can we enforce a volume preservation constraint? [QLDGJ22]
Use power diagrams i.e. semi-discrete optimal transport

- The f_i’s maximize the dual objective $\sum_{i=1}^N v_i f_i + \int_{y \in \Omega} \min_{i=0}^N [c_i(y) - f_i] \, dy$.

- **Optimality** conditions \iff $\text{Vol}(\text{Cell}_i) = v_i$.

- To compute the cells, the objective and its gradient:
 - If $c_i(y) = \|y - x_i\|^2$ for all cells, use a clever **grid-free** algorithm.
 - Otherwise, just use KeOps.
Power plastics [QLY$^{+}$ 23]
Power plastics [QLY+ 23] – without the eye candy
Main numerical ingredients

These simulations alternate between:

1. **Moving the particles** according to your favorite N-body model.

2. Computing Laguerre **cells** with the **correct volumes**:
 - (Multiscale) Sinkhorn for tolerance $> 5\%$.
 - (Quasi-)Newton for tolerance $< 1\%$.

3. **Correcting** the particle positions to enforce the volume-preservation constraint:
 - Jump to the centroid of the cell.
 - Or add a spring for smoother trajectories.

 See e.g. Thomas Gallouët for a rigorous analysis with Mérigot, Lévy, etc.

But today: new applications with **custom cost functions** (thanks KeOps).
Anisotropic power diagrams let us model polycrystalline metals [BFR+24].

Ellipsoids.

Pixel cells.

5,000 crystals in 3D.
Fit to real EBSD scan of low-carbon steel [BFR+ 24]

Data from Tata steel.

Our APD model.

New synthetic image.

We can generate new, realistic 3D images with \textit{prescribed properties} in seconds.
Change the cost function to simulate hard (blue) and soft (orange) cells [DF24]

The **raw** 100x100x100 pixel grid…

with some Hollywood **makeup**.
Run-and-tumble motion \[\text{DF24}\]

2D disk.

3D cube.
Fire alarm! [DF24]

Hard particles **burn.**

Soft particles **escape.**
Self-organizing swarms of blind, incompressible swimmers [DF24]

\[c(x, y) = \frac{|y-x|}{r_0(\theta)} \]
Self-organizing swarms of blind, incompressible swimmers [DF24]

Order emerges out of blind collisions and re-alignments.
Surface tension [DF24]
Surface tension [DF24] – playing with the energy parameters
Conclusion
Genuine team work

Benjamin Charlier Joan Glaunès Thibault Séjourné F.-X. Vialard Gabriel Peyré

Alain Trouvé Marc Niethammer Shen Zhengyang Olga Mula Hieu Do
Key points

• Optimal Transport = volume preservation = **generalized sorting**:
 → Super-fast solvers on **simple domains**, especially 2D/3D spaces.
 → **Fundamental tool** at the intersection of geometry and statistics.

• “**Video-game physics**” is great for modelling:
 → **Expressive**, real-time simulations that you can implement without being a Finite Elements guru: XPBD, DiffPD, Taichi…

• GPUs are more **versatile** than you think.
 → Ongoing work to provide **fast GPU backends** to researchers, going beyond what Google and Facebook are ready to pay for.

2026 target for scientific Python: **interactive, web-based** simulations à la ShaderToy.
Documentation and tutorials are available online

www.kernel-operations.io

www.jeanfeydy.com/geometric_data_analysis.pdf
References
M. Agueh and G. Carlier.

Barycenters in the Wasserstein space.

Dimitri P Bertsekas.

A distributed algorithm for the assignment problem.

Maciej Buze, Jean Feydy, Steven Roper, Karo Sedighiani, and David P Bourne.

Anisotropic power diagrams for polycrystal modelling: efficient generation of curved grains via optimal transport.

arXiv submission 5452163, 2024.

Haili Chui and Anand Rangarajan.

A new algorithm for non-rigid point matching.

Marco Cuturi.

Sinkhorn distances: Lightspeed computation of optimal transport.

Antoine Diez and Jean Feydy.

An optimal transport model for dynamical shapes, collective motion and cellular aggregates, 2024.
Steven Gold, Anand Rangarajan, Chien-Ping Lu, Suguna Pappu, and Eric Mjolsness.

New algorithms for 2d and 3d point matching: Pose estimation and correspondence.

Leonid V Kantorovich.

On the translocation of masses.

Harold W Kuhn.

The Hungarian method for the assignment problem.

Jeffrey J Kosowsky and Alan L Yuille.

The invisible hand algorithm: Solving the assignment problem with statistical physics.

Sebastian Lague.

Coding adventure: Simulating fluids.

https://www.youtube.com/watch?v=rSKMYc1CQHE&t=1s, 2023.

Bruno Lévy.

A numerical algorithm for l2 semi-discrete optimal transport in 3d.

Quentin Mérigot.

A multiscale approach to optimal transport.

Gabriel Peyré and Marco Cuturi.

Computational optimal transport.

Anthony Prieur.

Simulation de la formation des structures de l’univers.

Ziyin Qu, Minchen Li, Fernando De Goes, and Chenfanfu Jiang.

The power particle-in-cell method.

ACM Transactions on Graphics, 41(4), 2022.
Ziyin Qu, Minchen Li, Yin Yang, Chenfanfu Jiang, and Fernando De Goes.

Power plastics: A hybrid Lagrangian/Eulerian solver for mesoscale inelastic flows.

Bernhard Schmitzer.

Stabilized sparse scaling algorithms for entropy regularized transport problems.

Anna Song.

Generation of tubular and membranous shape textures with curvature functionals.

Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle.

A material point method for snow simulation.