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Who am I?

2012–2016 ENS Paris,mathematics and applications.

2015 MVA thesis with Siemens Healthcare in Princeton.

2016–2019 PhD thesis with Alain Trouvé, computational anatomy;

TA/tutor in applied maths at the ENS Paris.

2019–2022 PostDoc with Michael Bronstein, geometric deep learning.

Family of medical doctors (radiologist, haematologist, GPs...):

strong motivation to work towards clinical solutions.

Make life easier for engineers and researchers in the field:

two libraries (KeOps, GeomLoss) to speed up geometric methods,

with new guarantees of robustness. 1



Outline of the presentation

Today, we will talk about:

1. KeOps: fast geometry with symbolic matrices.

2. Applications to machine learning, proteins, maths...

3. GeomLoss: fast, robust and scalable optimal transport.

4. Scientific context, future works.
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Symbolic matrices?



Machine learning libraries represent most objects as tensors

M[ i , j ]

(in, jn,Mn) F( xi , yj )

Dense matrix

Sparse matrix Symbolic matrix

Coefficients only

Coordinates + coeffs Formula + data

Densematrices – large, contiguous arrays of numbers:

+ Convenient and well supported.

– Heavy load on thememories of our GPUs, with time-consuming

transfers that take place between compute units. 3
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M[ i , j ] (in, jn,Mn)
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Sparsematrices – tensors that have few non-zero entries:

+ Represent large tensors with a small memory footprint.

– Outside of graph processing, few objects are sparse enough

to really benefit from this representation. 3



Machine learning libraries represent most objects as tensors

M[ i , j ] (in, jn,Mn) F( xi , yj )

Dense matrix Sparse matrix Symbolic matrix

Coefficients only Coordinates + coeffs Formula + data

Distance and kernelmatrices, point convolutions, attention layers:

+ Linearmemory usage: no morememory overflows.

+ We can optimize the use of registers for a×10 -×100 speed-up

vs. a standard PyTorch GPU baseline. 3



We provide support for this “new abstraction” on the GPU

Our library comes with all the perks of a deep learning toolbox:

+ Transparent array-like interface.

+ Full support for automatic differentiation.

+ Comprehensive collection of tutorials, available online.

Under the hood: combines an optimized C++ engine with high-level

binders for PyTorch, NumPy, Matlab and R (thanks to Ghislain Durif).

(We welcome contributors for JAX, Julia and other frameworks!)

To get started:

=⇒ pip install pykeops ⇐=
www.kernel-operations.io
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A first example: efficient nearest neighbor search in dimension 50

Create large point clouds using standard PyTorch syntax:

import torch
N, M, D = 10**6, 10**6, 50
x = torch.rand(N, 1, D).cuda() # (1M, 1, 50) array
y = torch.rand(1, M, D).cuda() # ( 1, 1M, 50) array

Turn dense arrays into symbolicmatrices:

from pykeops.torch import LazyTensor
x_i, y_j = LazyTensor(x), LazyTensor(y)

Create a large symbolic matrix of squared distances:

D_ij = ((x_i - y_j)**2).sum(dim=2) # (1M, 1M) symbolic

Use an .argmin() reduction to perform a nearest neighbor query:

indices_i = D_ij.argmin(dim=1) # -> standard torch tensor
5



The KeOps library combines performance with flexibility

Script of the previous slide = efficient nearest neighbor query,

on par with the bruteforce CUDA scheme of the FAISS library…

And can be used with any metric!

D_ij = ((x_i - x_j) ** 2).sum(dim=2) # Euclidean
M_ij = (x_i - x_j).abs().sum(dim=2) # Manhattan
C_ij = 1 - (x_i | x_j) # Cosine
H_ij = D_ij / (x_i[...,0] * x_j[...,0]) # Hyperbolic

KeOps supports arbitrary formulas and variables with:

• Reductions: sum, log-sum-exp, K-min, matrix-vector product, etc.

• Operations: +,×, sqrt, exp, neural networks, etc.
• Advanced schemes: batch processing, block sparsity, etc.

• Automatic differentiation: seamless integration with PyTorch. 6



KeOps lets users work with millions of points at a time

Benchmark of a matrix-vector product with a N-by-N Gaussian kernel

matrix between 3D point clouds.

100 1k 10k 100k 1M

1ms

10ms

100ms

1 s

10 s

out of memory!

Number of points N

Ti
m
e

We run NumPy, PyTorch and KeOps on a RTX 2080 Ti GPU.

NumPy (CPU)

PyTorch (GPU)

KeOps (GPU)
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Applications



KeOps is a good fit for machine learning research

K-Means. Gaussian Mixture Model.

Use any kernel, metric or formula you like!

=⇒More tutorials coming up soon.
8



KeOps is a good fit for machine learning research

Spectral analysis. UMAP in hyperbolic space.

Use any kernel, metric or formula you like!

=⇒More tutorials coming up soon.
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Applications to Kriging, spline, Gaussian process, kernel regression

A standard tool for regression [Lec18]:

Under the hood, solve a kernel linear system:

(λ Id+ Kxx) a = b i.e. a ← (λ Id+ Kxx)
−1b

where λ > 0 and (Kxx)i,j = k(xi, xj) is a positive definite matrix.
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Applications to Kriging, spline, Gaussian process, kernel regression

KeOps symbolic tensors:

• Can be fed to standard solvers: SciPy, GPytorch, etc.

• GPytorch on the 3DRoad dataset (N = 278k, D = 3):

7h with 8 GPUs → 15mn with 1 GPU.

• Provide a fast backend for research codes: see e.g.

Kernel methods through the roof: handling billions of points

efficiently, by G. Meanti, L. Carratino, L. Rosasco, A. Rudi (2020).

11



Geometric deep learningw. F. Sverrisson, B. Correia andM. Bronstein

Data-driven methods on point clouds and proteins:

+ Fast K-NN search: local interactions.

+ Fast N-by-N computations: global interactions.

+ Heterogeneous batches, Octree-like acceleration.

Curvatures at all scales. Quasi-geodesic convolutions.
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Applications to protein sciences [SFCB20]

(a) Raw protein data. (b) Interface. (c) Prediction.

(d) Chem. 1. (e) Chem. 2. (f) K at 1 Å. (g) H at 10 Å.
13



Fast end-to-end learning on protein surfaces

1. MaSIF

2. Ours

atoms
a. surface mesh b. features c. patches d. output

a. points, normals b. features c. coordinates d. output

6 s 20 s 50 s

70ms 50ms 6ms 40ms

165ms

pre-processing on the fly

−→ ×100 -×1,000 faster, lighter
and fully differentiable.
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KeOps lets you focus on your models, results and theorems

Some applications to dynamical systems [DM08, DFMAT17]

and statistics [CDF19] with A. Diez, G. Clarté and P. Degond:

3D Vicsek model with orientation, 2D Vicsek model on the torus,

interactive demo with 2k flyers. in real-time with 100k swimmers.
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KeOps lets you focus on your models, results and theorems

=⇒ Scale up tomillions/billions of agents with Python scripts.

Packing problem in 2D Collective Monte Carlo sampling

with 10k repulsive balls. on the hyperbolic Poincaré disk.
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Fast, scalable and robust

optimal transport solvers



TheWasserstein, Earth Mover’s distance

Sorting points in 1D :

source
δx1 δx2 δx3 δx4 δx5

target
δy3 δy5 δy2 δy4 δy1

assignment

σ∗ : [[1, 5]]→ [[1, 5]]

OT(α, β) =
1

2N

N∑
i=1

|xi − yσ∗(i)|2

= min
σ∈SN

1

2N

N∑
i=1

|xi − yσ(i)|2
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Optimal transport generalizes sorting to D > 1

Minimize over N-by-Mmatrices

(transport plans) π :

OT(α, β) = min
π

∑
i,j

πi,j · 12 |xi − yj|2︸ ︷︷ ︸
transport cost

subject to πi,j > 0,∑
j

πi,j = αi,
∑
i

πi,j = βj.
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Key properties [Bre91]

The Wasserstein loss OT(α, β) is:

• Symmetric: OT(α, β) = OT(β, α) .

• Positive: OT(α, β) > 0 .

• Definite: OT(α, β) = 0⇐⇒ α = β .

• Translation-aware: OT(α, Translate~v(α) ) =
1
2‖~v ‖

2 .

• More generally, OT retrieves the unique gradient of a convex

function T = ∇ϕ that maps α onto β :

In dimension 1, (xi − xj) · (yσ(i) − yσ(j)) > 0

In dimension D, 〈 xi − xj , T(xi)− T(xj) 〉RD > 0 .

=⇒ Appealing generalization of an increasing mapping.
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Clean gradients for registration and measure-fitting problems

t = .00
20



Clean gradients for registration and measure-fitting problems

t = .25
20



Clean gradients for registration and measure-fitting problems

t = .50
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Clean gradients for registration and measure-fitting problems

t = 1.00
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Clean gradients for registration and measure-fitting problems

t = 5.00
20



Clean gradients for registration and measure-fitting problems

t = 10.00
20



Robust optimal transport: softening the bijectivity constraints

Standard OT:minimize over N-by-M transport plans π,

OT(α, β) = min
π
〈12 |xi − yj|2, π〉

s.t. π > 0 , π1 = α, πᵀ1 = β .

When dealing with real-life data, we’d rather work with:

OTσ,ρ(α, β) = min
π
〈12 |xi − yj|2, π〉

+ σ2 KL(π |α⊗ β)︸ ︷︷ ︸
π is fuzzy at scale σ

+ ρ2 D(π1 |α) + ρ2 D(πᵀ1 |β)︸ ︷︷ ︸
π tries to match α with β… up to a distance ρ

.

In the formula above:

• KL is the relative entropy.

• Dmay be the relative entropy, the total variation, etc.
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Robust optimal transport: fast algorithms, with guarantees

We define the Sinkhorn divergence:

Sσ,ρ(α, β) = OTσ,ρ(α, β)− 1
2OTσ,ρ(α, α)−

1
2OTσ,ρ(β, β)

' OT“lazy-ρ”( kσ ? α , kσ ? β ) ,

where kσ is a Gaussian kernel of deviation σ and

our “lazy” particles do not move beyond a distance ρ.

Theorem 1 (geometry): Sσ,ρ is suitable for gradient descent.

It is positive, definite, convex and metrizes the convergence in law.

Theorem 2 (algorithm): We can implement Sσ,ρ efficiently, on GPUs.

Two main ingredients: log-convolution with the Gaussian kernel kσ

and a proximal operator that is related to ρ2 D(· | ·).
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How should we solve the OT problem?

Key dates for discrete optimal transport with N points:

• [Kan42]: Dual problem.

• [Kuh55]: Hungarianmethod in O(N3).

• [Ber79]: Auction algorithm in O(N2).

• [KY94]: SoftAssign = Sinkhorn + annealing, in O(N2).

• [GRL+98, CR00]: Robust Point Matching = Sinkhorn as a loss.

• [Cut13]: Start of the GPU era.

• [Mér11, Lév15, Sch19]: Multiscale solvers in O(N log N).

• Today: Multiscale Sinkhorn algorithm, on the GPU.

=⇒ Generalized QuickSort algorithm.
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Scaling up optimal transport to anatomical data

Progresses of the last decade add up to a×100 -×1000 acceleration:

Sinkhorn GPU
×10−−→ + KeOps

×10−−→ + Annealing
×10−−→ + Multiscale

With a precision of 1%, on a modern gaming GPU:

10k points in 30-50ms 100k points in 100-200ms

24



Geometric Loss functions for PyTorch

Our website: www.kernel-operations.io/geomloss

=⇒ pip install geomloss ⇐=

# Large point clouds in [0, 1]3

import torch
x = torch.rand(100000, 3, requires_grad=True).cuda()
y = torch.rand(200000, 3).cuda()

# Define a Wasserstein loss between sampled measures
from geomloss import SamplesLoss
loss = SamplesLoss(loss="sinkhorn", p=2)
L = loss(x, y) # By default, use constant weights

Soon: efficient support for images,meshes and generic metrics.
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Ongoing work: computational anatomy

Fast OT-based registration with Diffeomorphic and spline registration

S. Joutard, X. Hao, A. Young from KCL, e.g. Deformetrica LDDMM software

Z. Shen, M. Niethammer from UNC. with the Aramis Inria team.

26



Scientific context, future works



Genuine team work

Alain Trouvé Thibault Séjourné F.-X. Vialard Gabriel Peyré

Benjamin Charlier Joan Glaunès Pierre Roussillon Pietro Gori

+ Freyr Sverrisson, Bruno Correia, Michael Bronstein, …
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Promoting cross-field interactions

28



Promoting cross-field interactions
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The Python revolution

The emergence of an open andmodular ecosystem of scientific tools

has been a boon to the community.

Deep learning frameworks have put GPU computing and

automatic differentiation in the hands of every student.

(Incredible!)

These libraries have attracted significant backing from industry

players (Google, Facebook, …) and allowed the field

to boom over the last decade.
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The Python revolution

Interacting with other researchers, doctors

and engineers has never been so easy.

But on the other hand, PyTorch and TensorFlow have also biased

the field towards a small set of well-supported operations:

convolutions and matrix-matrix products, mostly.

This design choice is not due to an intrinsic limitation of GPUs:

our hardware is more than capable of simulating large,

open 3D worlds in real-time!

As academic researchers, we must strive to keep other paths open.

Foster the development of a full range of methods,

from robust convex baselines

to expressive deep learning pipelines.

30



Our contribution to the community

KeOps and GeomLoss are:

+ Fast: ×10 -×1,000 speedup vs. naive GPU implementations.

+ Memory-efficient: O(N), not O(N2).

+ Versatile, with a transparent interface: freedom!

+ Powerful and well-documented: research-friendly.

− Slow with large vectors of dimension D > 100.

First half of 2021:

→ Approximation strategies (Nyström, etc.) in KeOps.

→ Wasserstein barycenters and grid images in GeomLoss.
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An ongoing research project

Roadmap for KeOps + GeomLoss:

2017–18 Proof of concept with conference papers, online codes.

Get first feedback from the community.

2019–20 Stable library with solid theorems, a well-documented API.

KeOps backends for high-level packages.

2021–22 Mature library with focused application papers, full tutorials.

Works out-of-the-box for students and engineers.

2022+ A standard toolbox, with genuine clinical applications?

That’s the target!
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Conclusion



Key points

• Symbolicmatrices are to geometricML what

sparsematrices are to graph processing:

−→ KeOps, x30 speed-up vs. PyTorch, TF and JAX.

−→ Useful in a wide range of settings.

• Optimal Transport = generalized sorting:

−→ Geometric gradients.

−→ Super-fast O(N log N) solvers.

• These tools open new paths for geometers and statisticians:

−→ GPUs are more versatile than you think.

−→ Ongoing work to provide fast GPU backends to researchers

– going beyond what Google and Facebook are ready to pay for.
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Conclusion

We believe that KeOps and GeomLoss will stimulate research on:

• Clusteringmethods: fast K-Means and EM iterations.

• Data representation: UMAP, fast KNN graphs with any metric.

• Kernelmethods: kernel matrices.

• Gaussian processes: covariance matrices.

• Geometric deep learning: point convolutions.

• Medical imaging: computational anatomy.

• Geometric statistics: going beyond Euclidean models.

• Natural language processing: transformer networks?

What do you think?
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Documentation and tutorials are available online

=⇒ www.kernel-operations.io ⇐=

www.jeanfeydy.com/geometric_data_analysis.pdf 35
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