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Recap of the previous lectures

Tomitigate the curse of dimensionality, we use:

• Expert knowledge: high-quality features.

• Relevant families of functions: kernels, convolutional networks.

• Relevant neighborhood structures: graphs.

Main challenge: local implementation ⟹ global understanding.

Produce guidelines and insights for practitioners.
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Large graphs are best understood as continuous objects [Pey11, EPW11]
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Simple graph. Manifold hypothesis. Physicalmanifold.
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Long history in physics [Dat18, Bria, NWRC22]

The Solar system. The ideal gasmodel. Fluid simulation.
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Remaining lectures

Lecture 5 – From discrete graphs to continuous spaces:

• The Poincaré disk.
• Local metrics and geodesics.

Lecture 6 – From discrete samples to continuous distributions:

• Duality: distributions and adversarial norms.
• Information geometry, kernels and optimal transport.

Lecture 7 –Hardware bottlenecks:

• Registers, parallel cores and compilers.
• Current trends.
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References [Ghy06, CFK+97, Lee97, Fey20]

Textbooks and introductions – in English:

• Poincaré and his disk – Étienne Ghys, 2006.
• Hyperbolic geometry – Cannon et al., 1997.
• Riemannian geometry: an introduction to curvature – John M. Lee, 1997.
• Geometric data analaysis, beyond convolutions – my PhD thesis, 2020.

Lecture notes available onmy website – in French:

• Culture mathématique.
• Introduction à la géométrie riemannienne par l’étude des espaces de formes.
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The Poincaré disk



Science and hypothesis – Henri Poincaré, 1902

The Non-EuclideanWorld. – If geometrical space were a
framework imposed on each of our representations
considered individually, it would be impossible to

represent to ourselves an image without this framework,
and we should be quite unable to change our geometry.

But this is not the case; geometry is only the summary
of the laws bywhich these images succeed each other.
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Science and hypothesis – Henri Poincaré, 1902

There is nothing, therefore, to prevent us from imagining
a series of representations, similar in every way to our
ordinary representations, but succeeding one another

according to laws which differ from those
to which we are accustomed.

Wemay thus conceive that beings whose education has
taken place in a medium in which those laws would be so

different, might have a very different geometry
from ours.
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Science and hypothesis – Henri Poincaré, 1902 [Nor]

Suppose, for example, a world enclosed in a large
sphere and subject to the following laws:

• The temperature is not uniform;
it is greatest at the centre, and gradually decreases
as wemove towards the circumference of the
sphere, where it is absolute zero.

The law of this temperature is as follows:
if 𝑅 be the radius of the sphere, and 𝑟 the distance of
the point considered from the centre, the absolute
temperature will be proportional to 𝑅2 − 𝑟2.
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Science and hypothesis – Henri Poincaré, 1902 [Nor]

• Further, I shall suppose that in this world all bodies
have the same coefficient of dilatation, so that the
linear dilatation of any body is proportional to its
absolute temperature.

• Finally, I shall assume that a body transported from
one point to another of different tem- perature is
instantaneously in thermal equilibriumwith its
new environment.
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Science and hypothesis – Henri Poincaré, 1902 [Nor]

There is nothing in these hypotheses either
contradictory or unimaginable. A moving object will
become smaller and smaller as it approaches the

circumference of the sphere.

Let us observe, in the first place, that although from the
point of view of our ordinary geometry this world is finite,

to its inhabitants it will appear infinite.

As they approach the surface of the sphere they become
colder, and at the same time smaller and smaller. The

steps they take are therefore also smaller and smaller, so
that they can never reach the boundary of the sphere. 11



The Poincarémetric is locally a Euclideanmetric

With 𝑥2 + 𝑦2 < 1, we define:

d((𝑥, 𝑦) → (𝑥, 𝑦) + (d𝑥, d𝑦)) = 2
√d𝑥2 + d𝑦2

1 − (𝑥2 + 𝑦2)

In other words:

d2((𝑥, 𝑦) → (𝑥, 𝑦) + (d𝑥, d𝑦)) = 4 d𝑥2 + d𝑦2

(1 − (𝑥2 + 𝑦2))2

This local Euclideanmetric is the Riemannianmetric:

‖(d𝑥, d𝑦)‖2
(𝑥,𝑦) = ⟨ (d𝑥, d𝑦) , 𝑔(𝑥,𝑦) (d𝑥, d𝑦) ⟩

𝑔(𝑥,𝑦) = (4/(1 − (𝑥2 + 𝑦2))2 0
0 4/(1 − (𝑥2 + 𝑦2))2)

dx

dy
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Length of curve

If 𝛾 ∶ [0, 1] → 𝐵(0, 1) is a smooth path, we define:

ℓ(𝛾) = ∫
1

0
‖ ̇𝛾(𝑡)‖𝛾(𝑡) d𝑡

For the straight path 𝛾(𝑡) = (𝑡, 0), we find:

ℓ(𝛾) = ∫
1

0
‖(1, 0)‖(𝑡,0) d𝑡

= ∫
1

0

2
1 − 𝑡2 d𝑡

= ∫
1

0

2
(1 + 𝑡)(1 − 𝑡)

d𝑡 = + ∞

The Poincaré disk is a universe in a nutshell.
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Tissot’s indicatrix [Brib, Kü04]

Tissot’s indicatrix at location (𝑥, 𝑦) is a unit ball for the local metric.
This ellipsoid allows us to depict distortions in cartography
and fully describes a Riemannianmetric on the 2Dmap. 14



Equivalent descriptions of the Poincaré segment (−1, +1)

Stereographic projections define bijections between
the segment 𝐼, the half-circle 𝐽 and the half-line 𝐻.

If we endow 𝐼 with the Poincaré metric:

‖(d𝑥)‖(𝑥)∈𝐼 = 2
√

d𝑥2

1 − 𝑥2 ,

then 𝐽 and 𝐻 are endowed with:

‖(d𝑥, d𝑧)‖(𝑥,𝑧)∈𝐽 =
√

d𝑥2 + d𝑧2

𝑧

‖(d𝑧)‖(𝑧)∈𝐻 =
√

d𝑧2

𝑧

I

J

H
(x,z)

(0,-1)

(-1,0)
(x

(z )

)
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Equivalent descriptions of the Poincaré disk

Stereographic projections define bijections between
the disk 𝐼, the hemisphere 𝐽 and the half-plane 𝐻.

If we endow 𝐼 with the Poincaré metric:

‖(d𝑥, d𝑦)‖(𝑥,𝑦)∈𝐼 = 2
√d𝑥2 + d𝑦2

1 − (𝑥2 + 𝑦2)
,

then 𝐽 and 𝐻 are endowed with:

‖(d𝑥, d𝑦, d𝑧)‖(𝑥,𝑦,𝑧)∈𝐽 =
√d𝑥2 + d𝑦2 + d𝑧2

𝑧

‖(d𝑦, d𝑧)‖(𝑦,𝑧)∈𝐻 =
√d𝑦2 + d𝑧2

𝑧

I

J

H

(x,y,z)

(y,z)

(x,y)
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Tissot’s indicatrix on the Poincaré disk, hemisphere and half-plane

2
√d𝑥2 + d𝑦2

1 − (𝑥2 + 𝑦2)
√d𝑥2 + d𝑦2 + d𝑧2

𝑧
√d𝑦2 + d𝑧2

𝑧
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The discrete Poincaré grid

√d𝑦2 + d𝑧2

𝑧
Octave grid based on a dyadic tree.
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Geodesics on the Poincaré disk



Geodesics on the Poincaré grid

The green and red paths
have the same length.

Going up is faster than
travelling sideways.
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Vertical geodesics on the Poincaré half-plane

If the source and target points belong to
the vertical axis 𝑦 = 0, the shortest

path is straight:

ℓ(𝑦(𝑡), 𝑧(𝑡)) = ∫
1

0

√ ̇𝑦(𝑡)2 + ̇𝑧(𝑡)2

𝑧(𝑡)
d𝑡

⩽ ∫
1

0

√ ̇𝑧(𝑡)2

𝑧(𝑡)
d𝑡

= ℓ(0, 𝑧(𝑡)) .

(y(t), z(t))
(0, z(t))
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Centers of the three Poincarémodels

Using our stereographic projections,
the North pole (𝑥, 𝑦, 𝑧) = (0, 0, +1)
of the hemisphere corresponds to:

• the center (𝑥, 𝑦) = (0, 0) of the disk,

• the point (𝑦, 𝑧) = (0, +2)
of the half-plane.

I

J

H

(0,0,1)

(0,2)

(0,0)
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Geodesics on the Poincaré hemisphere

The vertical axis in the half-plane is
equivalent to the “Greenwichmeridian”
in the hemisphere.

Since the Poincaré metric:

‖(d𝑥, d𝑦, d𝑧)‖(𝑥,𝑦,𝑧)∈𝐽 =
√d𝑥2 + d𝑦2 + d𝑧2

𝑧

is invariant by rotations:

(𝑥, 𝑦, 𝑧) ↦ (cos(𝜃) 𝑥, sin(𝜃) 𝑦, 𝑧) ,

all great circles that pass through the North
pole are also geodesic curves.

I

J

H

(0,0,1)

(0,2)

(0,0)
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Geodesics on the Poincaré hemisphere

The vertical axis in the half-plane is
equivalent to the “Greenwichmeridian”
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I

J

H

(x,y,z)

(y,z)

(x,y)
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Meridians on the three Poincarémodels

Diameters. Meridians. Half-circles that pass
through (𝑦, 𝑧) = (0, +2) .
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Geodesics on the Poincaré half-plane

Half-circles that are perpendicular to the
horizontal axis are all geodesics.

This is because the Poincaré metric:

‖(d𝑦, d𝑧)‖(𝑦,𝑧)∈𝐻 =
√d𝑦2 + d𝑧2

𝑧

is invariant by horizontal translations:

(𝑦, 𝑧) ↦ (𝑦 + Δ𝑦, 𝑧)

and scalingswith a positive constant 𝑎 > 0:
(𝑦, 𝑧) ↦ (𝑎𝑦, 𝑎𝑧) .
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Geodesics on the Poincaré grid, half-plane and disk

Up-and-down paths. Half-circles and
vertical lines.

Orthogonal circles and
diameters.
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A continuous tree

Circle Limit IV byM.C. Escher:
a regular tiling of the Poincaré disk.

The Cayley graph of SL2(ℤ)
is to the Poincaré disk what a

regular grid is to the Euclidean plane. 31



Recap on the Poincaré disk

We should remember that:

• A Riemannianmetric is a smooth field of Euclidean norms.
It is equivalent to Tissot’s indicatrix in cartography.

• Convenientway of defining arbitrary geometries:
the Poincaré disk is a continuous tree.

• Changes of coordinates are key to eloquent proofs.
Don’t get stuck on one parameterization.

• Discrete ↔ Continuous analogies go both ways.
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Riemannian geometry, in practice



A convenient way of working with surfaces

As a surface embedded in 3D. The torus as a flat 2D square.
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A convenient way of working with surfaces

Geodesics on the donut. The torus as a curved 2D square.
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Mathematical objects [AFPA06, KSA19]

Volume

Covariancematrices: geodesics for the
Euclidean, affine-invariant and

log-Euclideanmetrics.

3D rotations: geodesics for
the Lie group structure.
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Probability distributions – see Lecture 6! [PC18]

Gaussians +Wassersteinmetric
= Euclidean.

Gaussians + relative entropy
= Poincaré. 36



Shapemetrics – remember Lecture 1!

The plane of triangle shapes. The sphere of triangle shapes.
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Shapemetrics [KMP07]

Geodesics in spaces of elephants and skeletons.
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Shapemetrics [vRESH16]

Barycentric interpolation in a space of hands.
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Network architectures are “projections” from parameter space to function space

Architecture

Space of parameters Space of estimators

Standard gradient descent on the parameters
⟺ Riemannian gradient descent on the network.

Core idea behind the natural gradient, neural tangent kernels,
(Wasserstein) gradient flows… 40



Graph and point cloud embeddings [SDSGR18, NK17]

Embedding a tree in the Poincaré disk. WordNetmammals subtree

UMAP (UniformManifold Approximation and Projections)
also works with Riemannian metrics.
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The geodesic equation – Hamiltonian form

If 𝐻(𝑞, 𝑝) = 1
2⟨ 𝑝 , 𝑔−1

𝑞 𝑝 ⟩ denotes theHamiltonian for the Riemannian metric 𝑔𝑞,
we can show that paths 𝑞(𝑡) thatminimize length locally and travel at constant speed
follow a coupled Ordinary Differential Equationwith amomentum vector 𝑝(𝑡):

⎧{
⎨{⎩

̇𝑞(𝑡) = + 𝜕𝐻
𝜕𝑝 (𝑞(𝑡), 𝑝(𝑡)) follow the velocity 𝑣(𝑡) = 𝑔−1

𝑞(𝑡)𝑝(𝑡).

̇𝑝(𝑡) = − 𝜕𝐻
𝜕𝑞 (𝑞(𝑡), 𝑝(𝑡)) steer the momentum to stay on a geodesic path.

Geodesic paths are fully determined by:

• the starting position 𝑞(𝑡 = 0),
• the startingmomentum 𝑝(𝑡 = 0) ⟺ the velocity ̇𝑞(𝑡 = 0) = 𝑔𝑞(𝑡=0)𝑝(𝑡 = 0).
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The exponential map [Chr10, Rok08]

From the 1D line
to the circle.

q

T Sq R
n
 

expq

0

   Sn
 

From the 2D plane
to the sphere.

Azimuthal equidistant
projection.

exp𝑞0
(𝑝0) denotes the solution 𝑞(𝑡 = 1) of the geodesic equation
with initial condition 𝑞(𝑡 = 0) = 𝑞0, 𝑝(𝑡 = 0) = 𝑝0.
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Computing geodesics from 𝐴 to 𝐵 – threemain scenarios

1. Themetric has a lot of structure – closed formulas:

• Just like the Poincaré disk: simple example + symmetries.
• Riemannianmetric ⟺ Relevant kernel.

2. Themetric 𝑔𝑥 is simple – path shortening:

• Discretize the path energy ℓ2(𝛾) ≃ 1
N ∑N

𝑖=1 N
2 ‖𝛾(𝑖/N) − 𝛾((𝑖 − 1)/N)‖2

𝛾(𝑖/N).
• “Mean curvature flow”: gradient descent with respect to the snapshot positions.

3. The cometric 𝐾𝑞 = (𝑔𝑞)−1 is simple – geodesic shooting:

• Implement the exponential (𝑞0, 𝑝0) ↦ exp𝑞0
(𝑝0) by integrating the Hamilton ODE.

• Solve the inverse problem 𝑝0 ↦ exp𝐴(𝑝0) ≃ 𝐵 with an optimizer or a network.
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Conclusion

Riemannianmetrics provide:

• Expressive vocabulary: trees, balls, shapes and probability distributions.

• Complete toolbox: local metric ⟶ geodesics, exponentials and barycenters.

• Appealingmessage:
simple paths on a curved space > complex paths on a flat space.

This framework is the cornerstone of several applied fields,
and provides an inspiring outlook in many other settings.

⟹ Lab sessionwith GeomStats. ⟸
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