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Recap of the first two lectures

Lecture 1 – Introduction:

• AI = model + data.
• A goodmodel is simple, accurate and honest.
• Understanding your model is key to creativity.

Lecture 2 – Flat vector spaces:

• Talk to domain experts ♡
• Best-case scenario: high-quality, informative features.
• Well-understood baselines: trees, K-NNs, linear and kernel regression.
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What about the curse of dimensionality?
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Remember: machine learning is about tables
that havemore columns than rows.
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The statistical curse of dimensionality (XKCD 882)
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The statistical curse of dimensionality (XKCD 882)
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The statistical curse of dimensionality (XKCD 882)
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The statistical curse of dimensionality (XKCD 882)
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The statistical curse of dimensionality [Vig]

Two simple workarounds:

• Sparsity: trees, lasso…
• Smoothness: polynomial regression, kernels…
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What does a Normal distribution look like… in dimension 1?
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What does a Normal distribution look like… in dimension 2?
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What does a Normal distribution look like… in higher dimension?

D = 2 D = 4 D = 9 D = 16 D = 25
D = 1

Histograms for 100,000 points x with D features of the Euclidean norm:

‖x‖ = √x[1]2 + ⋯ + x[D]2 .

We recognize the sum of D independent, indentically distributed variables ofmean 1.
Taking the square root, we get a random variable of mean

√
D.
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What does a Normal distribution look like… in higher dimension?

Histograms for 100,000 points x with D
features of the scaled Euclidean norm:

1√
D

‖x‖ = √ 1
D(x[1]2 + ⋯ + x[D]2) .

As predicted by the central limit theorem,
1√
D
‖x‖ concentrates around its mean value 1.

D = 2
D = 4

D = 9

D = 16

D = 25

D = 1
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The “soap bubble” effect (Cf. Ferenc Huszár)

Histograms for 100,000 points x with D
features of the rescaled planar projections:

‖x‖√
D ⋅ √x[1]2 + x[2]2

(x[1], x[2]) .

This provides a faithful visualization of a
Normal Gaussian sample in dimension D.

D = 2 D = 4 D = 9

D = 16 D = 25 D = 100
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High-dimensional i.i.d. samples = white noise

Mean value. Sample x1. Sample x2. Difference x1 − x2.

Samples do not look like the average value of the distribution,
and are all orthogonal to each other.
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Geometric consequences of the curse of dimensionality

If we assume that our D > 10 features are independent and identically distributed:

• We require 10D samples to enable basic statistics: histograms, density estimation…
• ‖xi − xj‖ is constant up to a minor deviation.
• The distance matrix contains no useful information.
• All of our intuitions break down.
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White noise is useless: garbage in, garbage out (XKCD 1838)

Doing machine learning is about understanding that
your data is notwhite noise.

We need to put a low-dimensional structure on our problem.
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Themanifold hypothesis

What matters for statistics is the intrinsic dimension “d” of the dataset,
not the extrinsic dimension “D” of the feature space.
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Overview of the class

Coming next:

• Lecture 3: “Discrete” geometries = graphs.
• Lecture 4: Deep learning on graphs and point clouds.
• Lecture 5: “Continuous” geometries = manifolds.
• Lecture 6: Spaces of probability distributions.
• Lecture 7: Hardware bottlenecks.

The aim of the class is to let you bridge the gap between
“discrete” and “continuous” descriptions

of the underlying problem structures.
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Today’s lecture

1. Why dowe care about graphs?

2. Local descriptors and archetypes:

• Dimension.
• Curvature.

3. Global embeddings:

• Lab session with UMAP.
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Why dowe care about graphs?



Yet another cake with our domain experts…

“Wemay not fully understand the columns of our table…
But we can certainly tell you that Patient A is similar to Patient B!”
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Undirected graphs

1

23

54
6

Algorithmic definition: a collection of vertices and edges.
Geometric perspective: a metric space that is defined locally…

and that we would like to understand globally!
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Networks and webs

Transportation networks. Communication and power lines.
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3D curves andmeshes [Fis12]

Vascular networks. Anatomical surfaces.

Intrinsic graph distances ≠ Extrinsinc Euclidean distances.
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From high-dimensional samples to graphs: K-Nearest Neighbors [Pey11]

If your data has a low-dimensional structure,
this should be visible on its neighborhood structure.
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From high-dimensional samples to graphs: kernel matrices

Gaussian kernel
matrix.

Ball connectivity
matrix. 25



Classical geometry [Bri, Che]

Discrete graph.

≠

Continuous surface.
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Modern geometry [Red]

Tree.

≃

Hyperbolic salad.
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It is not the encoding that matters – but the geometry that is inside [SACO22]

Mesh triangulations, sampling densities or point cloud representations
should not distract ourselves from the underlying objects.
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But how dowe untangle such a web of vertices and edges? [Mat11]

Going from local connectivity to global structure
is the main open challenge in geometry. 29



Dimension



Dimension = number of degrees of freedom

Pong is 1D. Pac-Man is 2D. Minecraft is 3D.
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What about geometric objects?

A segment is 1D. A disk is 2D. A ball is 3D.
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Fitting an ellipsoid to a K-NN graph is easy using local PCA
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What is the dimension of an ellipsoid?

d = 1 d = 1.5 ? d = 2
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A rule of thumb

Let 𝜆1, … , 𝜆D denote the lengths of the principal axes.

𝜆2
1 > ⋯ > 𝜆2

D are the diagonal coefficients of the PCA.

We normalize them as li = 𝜆2
i /(𝜆2

1 + ⋯ + 𝜆2
D).

Then, wemay define the local dimension d as
the smallest index such that

l1 + ⋯ + ld > 80%.

Other conventions exist!
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What about “pure” graphs?

Hausdorff dimension: we pick d such that:

Vol(𝐵(x, r)) ∼ rd.

We estimate:

d ≃ log(Vol(𝐵(x, r)))
log(r)

by a linear regression on r = 1, 2, 3, 4, 5, …
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This definition works well for many objects, including fractals.

d = log 4
log 2 = 2 d = log 8

log 2 = 3 d = log 3
log 2
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Problem: Vol(𝐵(x, r)) is not always a polynomial function of r [TDGC+21]

Cliques: we fill the graph
and plateau very quickly.

Grids: we retrieve a
polynomial.

Trees: the volume of a ball
grows exponentially fast.

This reminds us of classical examples in continuous geometry:
the sphere, the Euclidean plane and the Poincaré disk.
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Curvature



Curvature of a 2D surface

38



Direct uses in physics and biology

Soap bubbles minimize:

area(𝒮) = ∫
𝒮

1 𝑑𝐴

under constant volume, or with boundary conditions.
They correspond to minimal surfaces with 𝐻 = 𝜅1 + 𝜅2 = 0 in cases 2 and 3.
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Direct uses in physics and biology

Red blood cells minimize:

Helfrich(𝒮) = ∫
𝒮
(𝐻 − 𝐻0)2 𝑑𝐴

or a variant of this energy, under constant volume.
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Direct uses in physics and biology [Son22]

Curvatubes minimize:
𝐹(𝒮) = ∫

𝒮
𝑝(𝜅1, 𝜅2) 𝑑𝐴

under constant volume, where:

𝑝(𝜅1, 𝜅2) = 𝑎2,0 𝜅2
1 + 𝑎1,1 𝜅1𝜅2 + 𝑎0,2 𝜅2

2 + 𝑎1,0 𝜅1 + 𝑎0,1 𝜅2 + 𝑎0,0 .
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Curvature is a powerful descriptor
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Sidenote: your skillset goes way beyond deep learning research

An inspiringmodel:

• Surface energy → convolutional volumetric loss function (phase-field).
• Start with white noise (texture generation) andminimize with gradient descent.
• Implemented on GPU with PyTorch.

Combines maths + GPU computing + imaging data ⟹ Perfectly within your reach!
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What about graphs? [TDGC+21]

Theorem Egregium (Gauss, 1827):

• 𝐻 = 𝜅1 + 𝜅2 is extrinsic → depends on the embedding.
• 𝐾 = 𝜅1 ⋅ 𝜅2 is intrinsic → can be defined on graphs.
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Gromov’s hyperbolicity [Gro87]

A graph is 𝛿-hyperbolic if
all geodesic triangles are thin.

Global definition, suited to the study
of groups such as SL2(ℤ).
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Forman curvature [SMJ+16, SSG+18, TDGC+21]

Forman curvature of an edge i ↔ j :

4 − degreei − degreej + 3 ⋅ triangles(i, j, ⋅ ) .

More precise but complex variations of this formula also exist. 46



Ollivier-Ricci curvature [WHY+22]

Ollivier-Ricci curvature of an edge i ↔ j :
is the optimal transport distance between 𝒩(xi, 1) and 𝒩(xj, 1)

larger than the distance between xi and xj?
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Toymodels

5 triangles per vertex:
positive curvature.

6 triangles per vertex:
flat curvature.

7 triangles per vertex:
negative curvature.

⟹ Basic intuition that guides current research in the field.
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