Geometric data analysis

Lecture 7/7 – GPU programming

Jean Feydy HeKA team, Inria Paris, Inserm, Université Paris-Cité

Thursday, 9am-12pm - 7 lectures

Faculté de médecine, Hôpital Cochin, rooms 2001 + 2005

Validation: project + quizz

Towards a continuous analysis of large datasets [Pey11, EPW11]

Simple graph.

Manifold **hypothesis**.

Physical manifold.

Long history in physics [Dat18, Bri, NWRC22]

The **Solar** system. The **ideal gas** model. **Fluid** simulation.

Research in **physics** \iff **High Performance Supercomputers** Only available through large **institutional centers**.

Recent history around video games and movies

FFVII on the PS1 – 1997.

FFVII on the PS4 – 2020.

Jensen Huang – 2022.

Research in graphics \iff Graphics Processing Units Affordable to any researcher: game-changer.

Statistics and Machine Learning have been around for **decades**. Breakthrough in 2010-15: hacking PlayStations for science became easy.

As AI researchers, we must understand:

1. What is a GPU?

- Thousands of cores, complex memory management.
- 4 rules of GPU programming.

2. Current trends in the semiconductor industry

- Just-in-time compilation, custom AI chips.
- Supply chain issues and their impact on our careers.

Coming from a **math background**:

- Chapter 2 of my PhD thesis, Geometric data analysis, beyond convolutions.
- Albert Chern's lecture notes at UCSD, Introduction to computer graphics.

Two YouTube channels to learn about hardware:

- Branch Education to understand the circuits.
- Asianometry to get some context on the industry.

Great software documentation – the source of Nvidia's monopoly in research:

- Mark Harris' posts on the Nvidia dev blog, GPU Gems textbooks.
- CUDA toolkit documentation, CUTLASS, CUB.

What is a GPU?

Nvidia focuses its marketing on economies of scale

Mythbusters Demo GPU versus CPU – 2009.

Nvidia focuses its marketing on economies of scale

Simple message: 10,000 cores \implies x1,000 acceleration vs. a 10-core CPU. But **how did we fill those tubes** with the correct paintballs?

Scientific programs are memory bound [Fro12]

The curse of parallelism: traffic jams.

Structure is required. Design **choices** favor **"bankable**" program architectures.

Let's open up a GPU

7,000 cores on a single GPU.

The Turing **architecture**.

GPUs and large administrations follow the same plan

GPU \simeq 100 redundant blocks.

Inside a CUDA block: workers and buffers.

Redundancy is key to recover high yields in spite of defects [Dor97, Pee11]

Silicon crystal.Chips are **etched onto silicon wafers**.GeForce RTX **3090** > GeForce RTX **3080** > GeForce RTX **3070** > ...

GPUs are optimized to render 3D meshes in real time [Hen08, Shi20]

Simulating light rays.

Ray tracing in one weekend.

Nvidia GeForce RTX (Ray Tracing Texel eXtreme)

 \iff **Geometric** computations + **textures**, on independent **patches** of the screen.

5 main layers of memory storage

On the CPU host:

- HDD / SSD 1 TB.
- Host RAM 100 GB.

On the GPU device:

- Device RAM 10 GB.
- Shared block-wise memories 1 Kb/core.
- Thread-wise registers 1 Kb/core.

Time(Device RAM \leftrightarrow Core) \simeq **100 arithmetic operations.**

HDD / SSD

Host RAM CPU cores

- 1. Promote **block-wise** parallelism.
- **2.** Reduce **Host** \leftrightarrow **Device** memory transfers.
- **3.** Reduce **Device** \leftrightarrow **Shared/Thread** memory transfers.
- 4. Promote block-wise, contiguous memory accesses.

HDD / SSD Host RAM CPU cores

Device RAM Shared mem. Thread mem. GPU cores __global__ void
My_CUDA_kernel(int param, float *device_data, float *device_output) {

// We use the indices of the current thread and CUDA block
// to assign each worker to its place in the computation plan:
int i = blockIdx.x * blockDim.x + threadIdx.x;

// We declare local variables as in standard C++.
// They'll be stored in the Thread memory whenever possible:
float some_value = 0;
// We access the Shared memory through a raw C++ pointer:
extern __shared__ float shared_mem[];

// We handle transfers with a transparent interface: some_value = device_data[i]; // Thread memory <- Device RAM shared_mem[i] = device_data[i]; // Shared memory <- Device RAM</pre>

}

```
// Computations are written in standard C++ and executed in parallel
// by all the threads of the CUDA block:
for(int k = 0; k < param; k++) {
    some_value = some_value + k * shared_mem[i];
    ...
}</pre>
```

// We may create checkpoints for all threads in a CUDA block.
// This may impact performances.
__syncthreads();

```
// We write results back to the Device RAM with:
device_output[i] = some_value; // Device RAM <- Thread memory</pre>
```

```
// The main C++ program, executed by the CPU:
int main(void) {
    int N = 1024; float *host_data, *host_out, *device_data, *device_out;
```

```
// Allocate memory on the device - the API is a bit heavy:
cudaMalloc((void**) &device_data, N * sizeof(float));
```

```
// Set the parameters of the CUDA block:
int block_size = 128; int grid_size = N / block_size;
int shared_mem_size = 2 * block_size * sizeof(float);
// Run the GPU kernel:
My_CUDA_kernel<<<grid_size, block_size, shared_mem_size>>>(...);
```

// Wait for the GPU to finish its computations: cudaDeviceSynchronize();

// Process and save the result "output array":
...

// Don't forget to free the allocated memory: cudaFree(device_data);

```
// And exit gracefully:
return 0;
```

1,000 € = 1 GPU = 100×100 cores with 5 main layers of memory:

- Large arrays are **slow**: Memory read/write \gg Arithmetics.
- Fast buffers are small: 1 KB \simeq 100 float numbers per core.

To optimize the **Shared** and **Thread** memories: C++ or Assembly.

Most scientists rely on pre-existing libraries of CUDA kernels and never dig deeper than the GPU Device RAM.

import torch		HDD / SSD
x = torch.rand(M, D)	# (M, D)	
y = torch.rand(N, D)	# (N, D)	Host RAM
<pre>diff = x.view(M,1,D) - y.view(1,N,D)</pre>	# (M, N, D)	CPU cores
diff2 = diff ** 2	# (M, N, D)	
sqdists = diff2.sum(dim=2)	# (M, N)	Device RAM
indices = sqdists.argmin(dim=1)	# (M,)	
		Shared mem.
Bottleneck: $(M \times N \times D)$ CPU operations and memory transfers.		Thread mem.
		GPU cores

import torch		HDD / SSD
x_ = torch.rand(M, D)	# (M, D)	
y_ = torch.rand(N, D)	# (N, D)	Host RAM
x = xcuda()	# (M, D)	HOSEINAM
x = ycuda()	# (N, D)	
		CPU cores
diff = x.view(M,1,D) - y.view(1,N,D)	# (M, N, D)	
diff2 = diff ** 2	# (M, N, D)	
sqdists = diff2.sum(dim=2)	# (M, N)	Device RAM
indices = sqdists.argmin(dim=1)	# (M,)	
		Shared mem.
Bottleneck:		Thread mem.
$(M \times N \times D)$ Device \leftrightarrow Thread memor	ry transfers.	GPU cores

RAM
cores
e RAM
d mem.
d mem.
cores

On-the-fly, tiled reduction: **optimal memory management**. **Bottleneck:** $(M \times N \times D)$ GPU computations.

$$\forall i \in [1, \mathbf{M}], \; \mathsf{index}[i] \leftarrow \; \arg \min_{j=1}^{\mathbf{N}} \; \sum_{k=1}^{\mathbf{D}} \left(x[i, \, k\,] - y[j, \, k\,] \right)^2$$

- Each **improvement** provides a $\times 10$ to $\times 100$ speed-up.
- Going even further, for **structured** data:
 - **Clusterize** the two point clouds.
 - Sort them to ensure that the clusters are contiguous in memory.
 - Skip whole blocks of the tiled distance matrix.
- Standard benchmarks (ann-benchmarks.com) and libraries: FAISS...

Compilation

Compilation is a major bottleneck in computer science

$$\forall i \in [1, \mathbf{M}], \; \mathsf{index}[i] \leftarrow \; \arg\min_{j=1}^{\mathbf{N}} \; \sum_{k=1}^{\mathbf{D}} \left(x[i, \, k] - y[j, \, k] \right)^2$$

- We have seen 4-5 different strategies, increasingly fast but complex.
- Optimal schemes for $\rm M <$ 1,000 look completely different.

Naive GPU implementations are often x100-x1,000 too slow.

Reaching optimal run times is hard.

Compilation is a deep scientific problem

The 4 color theorem.

4-coloring a planar graph.

Register allocation via k-coloring of the interference graph

function(R1):
 R2 = R1 ** 2
 R1 = 5 * R2
 R2 = R1 + 6
 return R2

Dream: turn high-level Python code into an optimal GPU binary.

Reality: very hard combinatorial problem, task-specific heuristics.

Existing libraries focus on **different targets**:

- Shaders for 3D meshes.
- Convolutions on 2D and 3D grids with varying filter sizes, channels...
- Fusion of **matrix multiplications** and **non-linearities** for MLPs, Transformers.

 \implies A **critical mass** is required to attract investments.

What about geometric ML?

Computing libraries represent most objects as tensors

Context. Constrained **memory accesses** on the GPU:

- Long access times to the registers penalize the use of large **dense** arrays.
- Hard-wired **contiguous** memory accesses penalize the use of **sparse** matrices.

Challenge. In order to reach optimal run times:

- **Restrict** ourselves to operations that are supported by the constructor: convolutions, FFT, etc.
- Develop new routines from scratch in C++/CUDA (FAISS, KPConv...): **several months of work**.

Dense array

The KeOps library: efficient support for symbolic matrices

Solution. KeOps-www.kernel-operations.io:

- For PyTorch, NumPy, Matlab and R, on **CPU and GPU**.
- Automatic differentiation.
- Just-in-time **compilation** of **optimized** C++ schemes, triggered for every new **reduction**: sum, min, etc.

If the formula "F" is simple (\leq 100 arithmetic operations): "100k × 100k" computation \rightarrow 10ms – 100ms, "1M × 1M" computation \rightarrow 1s – 10s.

Hardware ceiling of 10¹² operations/s. ×10 to ×100 speed-up vs standard GPU implementations for a wide range of problems.

Symbolic matric Formula + data

- Distances d(x_i,y_i).
- Kernel k(x_i,y_i).
- Numerous
 transforms.

A first example: efficient nearest neighbor search in dimension 50

Create large point clouds using **standard PyTorch syntax**:

import torch

```
N, M, D = 10**6, 10**6, 50
x = torch.rand(N, 1, D).cuda() # (1M, 1, 50) array
y = torch.rand(1, M, D).cuda() # ( 1, 1M, 50) array
```

Turn dense arrays into symbolic matrices:

```
from pykeops.torch import LazyTensor
x_i, y_j = LazyTensor(x), LazyTensor(y)
```

Create a large **symbolic matrix** of squared distances:

D_ij = ((x_i - y_j) ** 2).sum(dim=2) # (1M, 1M) symbolic

Use an .argmin() reduction to perform a nearest neighbor query: indices_i = D_ij.argmin(dim=1) # -> standard torch tensor

The KeOps library combines performance with flexibility

Script of the previous slide = efficient nearest neighbor query, **on par** with the bruteforce CUDA scheme of the **FAISS** library... And can be used with **any metric**!

D_ij = ((x_i - x_j) ** 2).sum(dim=2) # Euclidean
M_ij = (x_i - x_j).abs().sum(dim=2) # Manhattan
C_ij = 1 - (x_i | x_j) # Cosine
H_ij = D_ij / (x_i[...,0] * x_j[...,0]) # Hyperbolic

KeOps supports arbitrary **formulas** and **variables** with:

- Reductions: sum, log-sum-exp, K-min, matrix-vector product, etc.
- **Operations:** +, ×, sqrt, exp, neural networks, etc.
- Advanced schemes: batch processing, block sparsity, etc.
- Automatic differentiation: seamless integration with PyTorch.

KeOps lets users work with millions of points at a time

Benchmark of a Gaussian **convolution** between **clouds of N 3D points** on a RTX 2080 Ti GPU.

KeOps is a good fit for machine learning research

K-Means.

Gaussian Mixture Model.

Use **any** kernel, metric or formula **you** like!

KeOps is a good fit for machine learning research

Spectral analysis.

UMAP in hyperbolic space.

Use **any** kernel, metric or formula **you** like!

Applications to Kriging, spline, Gaussian process, kernel regression

A standard tool for regression [Lec18]:

Under the hood, solve a kernel linear system:

$$(\lambda \operatorname{Id} + K_{xx}) a = b$$
 i.e. $a \leftarrow (\lambda \operatorname{Id} + K_{xx})^{-1} b$

where $\lambda \ge 0$ et $(K_{xx})_{i,j} = k(x_i, x_j)$ is a positive definite matrix.

KeOps symbolic tensors $(K_{xx})_{i,j} = k(x_i, x_j)$:

- Can be fed to **standard solvers**: SciPy, GPyTorch, etc.
- GPytorch on the 3DRoad dataset (N = 278k, D = 3):

7h with 8 GPUs \rightarrow 15mn with 1 GPU.

• Provide a fast backend for research codes:

see e.g. *Kernel methods through the roof: handling billions of points efficiently, by G. Meanti, L. Carratino, L. Rosasco, A. Rudi (2020).*

KeOps lets researchers focus on their models, results and theorems

Some applications to **dynamical systems** [DM08, DFMAT17] and **statistics** [CDF19] with A. Diez, G. Clarté et P. Degond:

3D Vicsek model with orientation, interactive demo with 2k **flyers**.

2D Vicsek model on the torus, in real-time with 100k **swimmers**.

KeOps lets researchers focus on their models, results and theorems

⇒ Scale up to **millions/billions** of agents with Python scripts.

Packing problem in 2D with 10k repulsive balls.

Collective Monte Carlo **sampling** on the hyperbolic Poincaré disk.

Scaling up geometric deep learning [GSM⁺20, SFCB20, SFS⁺22]

anature methods nature methods

×100 -×1,000 **faster**, **lighter** and fully differentiable.

Scaling up geometric deep learning and optimal transport [SFL+21]

Recap on compilation

- Turning scientific code into optimal binaries is **an open problem**:
 - \longrightarrow Massive **room for improvement** on the software side.
 - \longrightarrow Valuable and impactful skill.
- Symbolic matrices are to geometric ML what sparse matrices are to graph processing:
 - → KeOps: **x30 speed-up** vs. PyTorch, TF et JAX.
 - $\longrightarrow~$ Useful in a wide range of settings.
- These tools open **new paths** for geometers and statisticians:
 - \longrightarrow GPUs are more **versatile** than you think.

Optimized AI cores

Nvidia Ampere architecture in-depth [KGJ⁺20]

NVIDIA A100 GPU - the flagship AI chip as of 2020-22.

Nvidia Ampere architecture in-depth [KGJ⁺20]

GA100 architecture with all 128 blocks. A100 GPU = 108 functional blocks.

Nvidia Ampere architecture in-depth [KGJ⁺20]

"Physical" CUDA block or Streaming Multiprocessor:

- 192 KB of **Shared** memory.
- 4 squads of "physical threads" or warps with:
 - 64 KB of Thread memory.
 - 16 int-32 cores.
 - 16 float-32 cores.
 - 8 float-64 cores.
 - 1 Tensor core.

		101										10.0						
L0 Instruction Cache Warp Scheduler (32 thread/clk)										L0 Instruction Gache Warp Scheduler (32 thread/clk)								
Dispatch Unit (32 thread/clk)										Dispatch Unit (32 thread/cik)								
	Reg	ister	File ('	16,38	4 x 32						Reg	gister	File (16,38	4 x 3	2-bit)		
INT32 INT32	FP32	FP32		64				1	NT33	INT52	FP32	FP32		44				
INT32 INT32	NT32 INT32 FP32 FP32 FF		FP64						INTEE	INTO2	FP32 FP32							
INT32 INT32			64					INT32 INT32 FP32 FP32			FF	44	14					
INT32 INT32			- FP	764					INTAX INTAX FP32 FP32 FF			44						
INT32 INT32 FP32 FP32 INT32 INT32 FP32 FP32 INT32 INT32 FP32 FP32			64		TENSOR CORE			INT32 INT32		FP32 FP32				TENSOR CORE				
		- PP	64					INTEE	INTO2	FP32 FP32		FP84						
		FP	64					INT32 INT3		FP32 FP32		FP84						
INT32 INT32	NT32 NT32 FP32 FP32		m	64					INTERINT		2 FP32 FP32		FP64					
10/ 57 57	10/ 57	1.01 67			LOY BT	LOT BT	SFU		ų.	LDV 8T	냆		107 87	뺤	LUV ST	LUV ST	SFU	
								╡		_		_				_		
_	Wa		istruc edula		ache hread	1111	_	-11	H	-	Wa	L0 Ir	istruc adula			16(16)	_	
					readio			51				ispatel						
	Reg	ister	File ('	16,38	4 x 32				Γ		Reg	gister	File (16,38	4 x 3	2-bit)		
INT32 INT32	FP32	FP32							INTEE	INTO2	FP32	FP32						
INT32 INT32	2 FP32 FP32 FF							INTEE	INTO2	FP32	FP32							
INT32 INT32	FP32	FP32							INTER	INTO2	FP32	FP32						
INT32 INT32	FP32	FP32							INTEE	INTO2	FP32	FP32				TENSOR CORE		
INT32 INT32	NT32 INT32 FP32 FP32				TE	TENSOR CORE			INTEE	INTO2	FP32	FP32				TENSOR CORE		
INT32 INT32 FP32 FP32 INT32 INT32 FP32 FP32 INT32 INT32 FP32 FP32		- FP	64					INTER	INTS2	FP32	FP32							
		FP32		64							FP32 FP32							
		FP	64					FP32			P32 FP32		FP84					
107 107 ST ST	LD/ ST	LDI ST	UDI ST	UDI ST	UN ST	UDY ST	SFU		LDY ST	LD/ ST	1.07 51	1.02' 51	1.0/ 51	LD/ 51	10/ 51	10/ 51	SFU	
	_	-				40.755	B L1 Data						_			_		

1 sign 8 exponent 23 significand $2^{-126} - 2^{+127} \approx 10^{-38} - 10^{+38}$ $1 + 2^{-23} \approx 1.000\ 000\ 1$

Tensor cores: great for CNNs and transformers

Trading speed vs. power consumption vs. versatiliy vs. manufacturing costs

"How do Smartphone CPUs Work?"

by Branch Education.

Tensor Processing Units, by Google.

The CPU vs. GPU uncoupling occured in the early 2000's

Computing power available to ML researchers

Conclusion

A geometric tour of data science

What is AI research about?

Outsider's view: enthusiast.

Insider's view: **professional**.

Tunnel vision on a single angle \implies **high risk** career. Biggest success of the 1848 **gold rush**: Levi's **blue jeans**.

ML research is 100% interdisciplinary - a mind map of my own PhD experience

Research is a deeply social and diverse activity

1. You bring more to the table than your **potential advisor**:

- **Full-time** focus on a subject = only during your PhD.
- Your **leverage**: show that you are skilled and **reliable**.

2. Tutoring time + open research area \gg Prestige:

- Avoid **crowded** teams and topics.
- Outstanding environments outside of Paris/London/Boston/SF...
- Connect in conferences and workshops.

- 3. Different countries, different people, different perspectives.Who is the "main character" of a PhD thesis?
 - I believe that it should be the **student**.
 - Some people think that it is the **advisor**.

4. Personal chemistry + **general** research area \gg Precise topic:

- A PhD that goes according to plan is a bit disappointing anyway ;-)
- **Meet** team members (including **students**!) before signing a long-term contract.
- Internship \simeq trial period, goes both ways.

Befriend domain experts - Find your own balance

References

🔋 Encyclopædia Britannica.

Ideal gas.

https://www.britannica.com/science/ideal-gas.

Grégoire Clarté, Antoine Diez, and Jean Feydy.

Collective proposal distributions for nonlinear MCMC samplers: Mean-field theory and fast implementation.

arXiv preprint arXiv:1909.08988, 2019.

References ii

Solar system orrery inner planets.

https://commons.wikimedia.org/wiki/File:Solar_system_orrery_inner_planets.gif, 2018.

CC BY-SA 4.0.

Pierre Degond, Amic Frouvelle, Sara Merino-Aceituno, and Ariane Trescases.

Alignment of self-propelled rigid bodies: from particle systems to macroscopic equations.

In *International workshop on Stochastic Dynamics out of Equilibrium*, pages 28–66. Springer, 2017.

Pierre Degond and Sébastien Motsch.

Continuum limit of self-driven particles with orientation interaction.

Mathematical Models and Methods in Applied Sciences, 18(supp01):1193–1215, 2008.

Erich Dornberger.

Prediction of OSF ring dynamics and grown-in voids in Czochralski silicon crystals.

PhD thesis, UCL-Université Catholique de Louvain, 1997.

livier Ecabert, Jochen Peters, and Matthew Walker.

Segmentation of the heart and great vessels in ct images using a model-based adaptation framework.

Medical Image Analysis, (15):863–876, 2011.

References v

Traffic jam at 17:30 downtown haikou city, hainan province, china.

https://commons.wikimedia.org/wiki/File: Traffic_jam_in_Haikou,_Hainan,_China_01.jpg, 2012.

Public domain.

Pablo Gainza, Freyr Sverrisson, Frederico Monti, Emanuele Rodola, D Boscaini, MM Bronstein, and BE Correia.

Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning.

Nature Methods, 17(2):184–192, 2020.

Henrik.

This diagram illustrates the ray tracing algorithm for rendering an image. https://commons.wikimedia.org/wiki/File:Ray_trace_diagram.svg, 2008.

Ronny Krashinsky, Olivier Giroux, Stephen Jones, Nick Stam, and Sridhar Ramaswamy.

Nvidia ampere architecture in-depth.

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/, 2020.

Chris Lattner.

The architecture of open source applications – llvm.

https://www.aosabook.org/en/llvm.html, 2011.

🔋 Florent Leclercq.

Bayesian optimization for likelihood-free cosmological inference.

Physical Review D, 98(6):063511, 2018.

Mohammad Sina Nabizadeh, Stephanie Wang, Ravi Ramamoorthi, and Albert Chern.

Covector fluids.

ACM Transactions on Graphics (TOG), 41(4):113:1–113:15, 2022.

References ix

A 12-inch silicon wafer.

https://commons.wikimedia.org/wiki/File:12-inch_silicon_wafer.jpg, 2011.

CC BY-SA 3.0.

🔋 Gabriel Peyré.

The numerical tours of signal processing-advanced computational signal and image processing.

IEEE Computing in Science and Engineering, 13(4):94–97, 2011.

- Freyr Sverrisson, Jean Feydy, Bruno E. Correia, and Michael M. Bronstein.

Fast end-to-end learning on protein surfaces.

bioRxiv, 2020.

Zhengyang Shen, Jean Feydy, Peirong Liu, Ariel H Curiale, Ruben San Jose Estepar, Raul San Jose Estepar, and Marc Niethammer.

Accurate point cloud registration with robust optimal transport.

Advances in Neural Information Processing Systems, 34:5373–5389, 2021.

Freyr Sverrisson, Jean Feydy, Joshua Southern, Michael M Bronstein, and Bruno Correia.

Physics-informed deep neural network for rigid-body protein docking.

In ICLR2022 Machine Learning for Drug Discovery, 2022.

Peter Shirley.

Ray tracing in one weekend, December 2020.

https://raytracing.github.io/books/RayTracingInOneWeekend.html.