Geometric data analysis

Lecture 7/7 – GPU programming

Jean Feydy
HeKA team, Inria Paris, Inserm, Université Paris-Cité

Thursday, 9am–12pm – 7 lectures

Faculté de médecine, Hôpital Cochin, rooms 2001 + 2005

Validation: project + quizz
Towards a continuous analysis of large datasets [Pey11, EPW11]

Simple graph. Manifold hypothesis. Physical manifold.
Long history in physics [Dat18, Bri, NWRC22]

The Solar system.

The ideal gas model.

Fluid simulation.

Research in physics \iff\ High Performance Supercomputers
Only available through large institutional centers.
Recent history around video games and movies

FFVII on the PS1 – 1997.

FFVII on the PS4 – 2020.

Jensen Huang – 2022.

Research in graphics \iff Graphics Processing Units

Affordable to any researcher: game-changer.
The “AI revolution” is primarily driven by hardware

Statistics and Machine Learning have been around for **decades**. **Breakthrough** in 2010-15: hacking **PlayStations** for **science** became **easy**.

As AI researchers, we must understand:

1. **What is a GPU?**
 - Thousands of cores, complex **memory** management.
 - 4 rules of GPU programming.

2. **Current trends in the semiconductor industry**
 - Just-in-time compilation, custom AI chips.
 - **Supply chain** issues and their impact on our careers.
Coming from a **math background**:

- Albert Chern’s lecture notes at UCSD, *Introduction to computer graphics*.

Two **YouTube channels** to learn about **hardware**:

- *Branch Education* – to understand the circuits.
- *Asianometry* – to get some context on the industry.

Great software documentation – the source of Nvidia’s monopoly in research:

- Mark Harris’ posts on the Nvidia dev blog, GPU Gems textbooks.
- CUDA toolkit documentation, CUTLASS, CUB.
What is a GPU?
Nvidia focuses its marketing on economies of scale

Mythbusters Demo GPU versus CPU – 2009.
Nvidia focuses its marketing on economies of scale

Simple message: 10,000 cores \Rightarrow x1,000 acceleration vs. a 10-core CPU.

But how did we fill those tubes with the correct paintballs?
Scientific programs are memory bound [Fro12]

The curse of parallelism: traffic jams.

Structure is required. Design choices favor “bankable” program architectures.
Let’s open up a GPU
Let’s open up a GPU

7,000 cores on a single GPU.

The Turing architecture.
GPUs and large administrations follow the same plan

GPU \approx 100\text{ redundant blocks.}

Inside a CUDA block: \textit{workers and buffers.}
Redundancy is key to recover high yields in spite of defects [Dor97, Pee11]

Silicon crystal. Chips are etched onto silicon wafers.

GeForce RTX 3090 > GeForce RTX 3080 > GeForce RTX 3070 > …
GPUs are optimized to render 3D meshes in real time [Hen08, Shi20]

Simulating light rays.

Ray tracing in one weekend.

Nvidia GeForce RTX (Ray Tracing Texel eXtreme)

\iff Geometric computations + textures, on independent patches of the screen.
5 main layers of memory storage

1 GPU \approx 100 blocks of 100 cores.

On the CPU host:
- HDD / SSD – 1 TB.
- Host RAM – 100 GB.

On the GPU device:
- Device RAM – 10 GB.
- Shared block-wise memories – 1 Kb/core.
- Thread-wise registers – 1 Kb/core.

Time(Device RAM \leftrightarrow Core) \approx 100 arithmetic operations.
4 rules of GPU programming

1. Promote **block-wise** parallelism.

2. Reduce **Host ↔ Device** memory transfers.

3. Reduce **Device ↔ Shared/Thread** memory transfers.

4. Promote **block-wise, contiguous** memory accesses.
__global__ void
My_CUDA_kernel(int param, float *device_data, float *device_output) {

 // We use the indices of the current thread and CUDA block
 // to assign each worker to its place in the computation plan:
 int i = blockIdx.x * blockDim.x + threadIdx.x;

 // We declare local variables as in standard C++.
 // They'll be stored in the Thread memory whenever possible:
 float some_value = 0;

 // We access the Shared memory through a raw C++ pointer:
 extern __shared__ float shared_mem[];

 // We handle transfers with a transparent interface:
 some_value = device_data[i]; // Thread memory ← Device RAM
 shared_mem[i] = device_data[i]; // Shared memory ← Device RAM
// Computations are written in standard C++ and executed in parallel by all the threads of the CUDA block:
for(int k = 0; k < param; k++) {
 some_value = some_value + k * shared_mem[i];
 ...
}

// We may create checkpoints for all threads in a CUDA block. This may impact performances.
__syncthreads();

// We write results back to the Device RAM with:
device_output[i] = some_value; // Device RAM <- Thread memory
The CUDA toolkit – a C++ dialect for GPU programming

// The main C++ program, executed by the CPU:
int main(void) {
 int N = 1024; float *host_data, *host_out, *device_data, *device_out;

 // Allocate memory on the device – the API is a bit heavy:
 cudaMalloc((void**) &device_data, N * sizeof(float));

 // Device RAM <- Host RAM:
 cudaMemcpy(device_data, host_data, N * sizeof(float), cudaMemcpyHostToDevice);

 // Set the parameters of the CUDA block:
 int block_size = 128; int grid_size = N / block_size;
 int shared_mem_size = 2 * block_size * sizeof(float);

 // Run the GPU kernel:
 My_CUDA_kernel<<<grid_size, block_size, shared_mem_size>>>(...);
// Wait for the GPU to finish its computations:
cudaDeviceSynchronize();

// Host RAM <- Device RAM:
cudaMemcpy(host_out, device_out, N * sizeof(float),
 cudaMemcpyDeviceToHost);

// Process and save the result "output array":
...

// Don't forget to free the allocated memory:
cudaFree(device_data);

// And exit gracefully:
return 0;
1,000 € = 1 GPU = 100 × 100 cores with 5 main layers of memory:

- **Large** arrays are **slow**: Memory read/write ≫ Arithmetics.
- **Fast** buffers are **small**: 1 KB ≃ 100 float numbers per core.

To optimize the **Shared** and **Thread** memories: **C++ or Assembly**.

Most **scientists** rely on **pre-existing libraries** of CUDA kernels and **never dig deeper than the GPU Device RAM**.
A practical example: nearest neighbor search

```python
import torch
x = torch.rand(M, D)  # (M, D)
y = torch.rand(N, D)  # (N, D)

diff = x.view(M,1,D) - y.view(1,N,D)  # (M, N, D)
diff2 = diff ** 2  # (M, N, D)
sqdists = diff2.sum(dim=2)  # (M, N)
indices = sqdists.argmin(dim=1)  # (M,)
```

Bottleneck:

($M \times N \times D$) **CPU** operations and memory transfers.
A practical example: nearest neighbor search

```python
import torch
x_ = torch.rand(M, D)  # (M, D)
y_ = torch.rand(N, D)  # (N, D)
x = x_.cuda()  # (M, D)
x = y_.cuda()  # (N, D)
diff = x.view(M,1,D) - y.view(1,N,D)  # (M, N, D)
diff2 = diff ** 2  # (M, N, D)
sqdists = diff2.sum(dim=2)  # (M, N)
indices = sqdists.argmin(dim=1)  # (M,)
```

Bottleneck:

(M x N x D) `Device<->Thread` memory transfers.
A practical example: nearest neighbor search

```python
import torch
x = torch.rand(M, D).cuda()  # (M, D)
y = torch.rand(N, D).cuda()  # (N, D)

# Use that |x-y|^2 = |x|^2 - 2 (x.y) + |y|^2:
dots = x @ y.T  # (M, N)
sq_y = (y ** 2).sum(dim=1)  # (N,)
sqdists = -2 * dots + sq_y.view(1,N)  # (M, N)
indices = sqdists.argmin(dim=1)  # (M,)
```

Bottleneck:

\((M \times N \times D)\) **GPU** computations if \(D > 100\),

\((M \times N)\) **Device↔Thread** memory transfers otherwise.
A practical example: nearest neighbor search

On-the-fly, tiled reduction: **optimal memory management**.

Bottleneck: \((M \times N \times D)\) GPU computations.
Recap on nearest neighbor search

\[\forall i \in [1, M], \quad \text{index}[i] \leftarrow \arg \min_{j=1}^{N} \sum_{k=1}^{D} (x[i, k] - y[j, k])^2 \]

- Each **improvement** provides a $\times 10$ to $\times 100$ speed-up.

- Going even further, for **structured** data:
 - **Clusterize** the two point clouds.
 - **Sort** them to ensure that the clusters are **contiguous** in memory.
 - **Skip** whole blocks of the tiled distance matrix.

- **Standard benchmarks** (ann-benchmarks.com) and **libraries**: FAISS…
Compilation
Compilation is a major bottleneck in computer science

\[\forall i \in [1, M], \quad \text{index}[i] \leftarrow \arg \min_{j=1}^{N} \sum_{k=1}^{D} (x[i, k] - y[j, k])^2 \]

- We have seen 4-5 different strategies, increasingly fast but complex.
- Optimal schemes for \(M < 1,000 \) look completely different.

Naive GPU implementations are often \(\times 100-\times 1,000 \) too slow.

Reaching optimal run times is **hard**.
Compilation is a deep scientific problem

The 4 color theorem.

4-coloring a planar graph.
Register allocation via k-coloring of the interference graph

```
def f(a):
    b = a ** 2
    c = 5 * b
    d = c + 6
    return d
```

```
function(R1):
    R2 = R1 ** 2
    R1 = 5 * R2
    R2 = R1 + 6
    return R2
```
LLVM: a welcome consolidation [Lat11]
Just-in-time compilation

Dream: turn **high-level** Python code into an **optimal GPU binary**.

Reality: very hard **combinatorial** problem, **task-specific heuristics**.

Existing libraries focus on **different targets**:

- **Shaders** for 3D meshes.
- **Convolutions** on 2D and 3D grids – with varying filter sizes, channels…
- Fusion of **matrix multiplications** and **non-linearities** for MLPs, Transformers.

⟹ **A critical mass** is required to attract investments.

What about geometric ML?
Computing libraries represent most objects as tensors

Context. Constrained memory accesses on the GPU:

- **Long access times** to the registers penalize the use of large **dense** arrays.
- Hard-wired **contiguous** memory accesses penalize the use of **sparse** matrices.

Challenge. In order to reach optimal run times:

- **Restrict** ourselves to operations that are supported by the constructor: convolutions, FFT, etc.
- Develop new routines from scratch in C++/CUDA (FAISS, KPConv...): **several months of work**.
The KeOps library: efficient support for symbolic matrices

Solution. KeOps – www.kernel-operations.io:

- For PyTorch, NumPy, Matlab and R, on **CPU and GPU**.
- **Automatic differentiation**.
- Just-in-time **compilation** of **optimized** C++ schemes, triggered for every new **reduction**: sum, min, etc.

If the formula “F” is simple (≤ 100 arithmetic operations):

- “100k \times 100k” computation \rightarrow 10ms – 100ms,
- “1M \times 1M” computation \rightarrow 1s – 10s.

Hardware ceiling of 10^{12} operations/s.

$\times 10$ to $\times 100$ **speed-up** vs standard GPU implementations for a wide range of problems.
A first example: efficient nearest neighbor search in dimension 50

Create large point clouds using **standard PyTorch syntax**:

```python
import torch
N, M, D = 10**6, 10**6, 50
x = torch.rand(N, 1, D).cuda()  # (1M, 1, 50) array
y = torch.rand(1, M, D).cuda()  # (1, 1M, 50) array
```

Turn **dense** arrays into **symbolic** matrices:

```python
from pykeops.torch import LazyTensor
x_i, y_j = LazyTensor(x), LazyTensor(y)
```

Create a large **symbolic matrix** of squared distances:

```python
D_ij = ((x_i - y_j) ** 2).sum(dim=2)  # (1M, 1M) symbolic
```

Use an **.argmin() reduction** to perform a nearest neighbor query:

```python
indices_i = D_ij.argmin(dim=1)  # -> standard torch tensor
```
The KeOps library combines performance with flexibility

Script of the previous slide = efficient nearest neighbor query, on par with the bruteforce CUDA scheme of the FAISS library…

And can be used with any metric!

D_{ij} = ((x_i - x_j) ** 2).sum(dim=2) # Euclidean
M_{ij} = (x_i - x_j).abs().sum(dim=2) # Manhattan
C_{ij} = 1 - (x_i | x_j) # Cosine
H_{ij} = D_{ij} / (x_i[...,0] * x_j[...,0]) # Hyperbolic

KeOps supports arbitrary formulas and variables with:

- **Reductions**: sum, log-sum-exp, K-min, matrix-vector product, etc.
- **Operations**: +, ×, sqrt, exp, neural networks, etc.
- **Advanced schemes**: batch processing, block sparsity, etc.
- **Automatic differentiation**: seamless integration with PyTorch.
KeOps lets users work with millions of points at a time

Benchmark of a Gaussian **convolution** between **clouds of N 3D points** on a RTX 2080 Ti GPU.
KeOps is a good fit for machine learning research

K-Means.

Gaussian Mixture Model.

Use **any** kernel, metric or formula **you** like!
KeOps is a good fit for machine learning research

Spectral analysis.

UMAP in hyperbolic space.

Use any kernel, metric or formula you like!
Applications to Kriging, spline, Gaussian process, kernel regression

A standard tool for regression [Lec18]:

Under the hood, solve a kernel linear system:

$$(\lambda \operatorname{Id} + K_{xx}) a = b \quad \text{i.e.} \quad a \leftarrow (\lambda \operatorname{Id} + K_{xx})^{-1} b$$

where $\lambda \geq 0$ and $(K_{xx})_{i,j} = k(x_i, x_j)$ is a positive definite matrix.
KeOps symbolic tensors \((K_{xx})_{i,j} = k(x_i, x_j)\):

- Can be fed to **standard solvers**: SciPy, GPyTorch, etc.
- GPytorch on the 3DRoad dataset \((N = 278k, D = 3)\):

 \[\text{7h with 8 GPUs} \quad \rightarrow \quad \text{15mn with 1 GPU}.\]

- Provide a **fast backend for research codes**:

 see e.g. *Kernel methods through the roof: handling billions of points efficiently*,
KeOps lets researchers focus on their models, results and theorems

Some applications to **dynamical systems** [DM08, DFMAT17] and **statistics** [CDF19] with A. Diez, G. Clarté et P. Degond:

- 3D Vicsek model with orientation, interactive demo with 2k **flyers**.
- 2D Vicsek model on the torus, in real-time with 100k **swimmers**.
KeOps lets researchers focus on their models, results and theorems

➡️ Scale up to millions/billions of agents with Python scripts.

Packing problem in 2D with 10k repulsive balls.

Collective Monte Carlo **sampling** on the hyperbolic Poincaré disk.
Scaling up geometric deep learning [GSM⁺20, SFCB20, SFS⁺22]

1. MaSIF
 a. surface mesh
 b. features
 c. patches
 d. output

2. dMaSIF
 a. points, normals
 b. features
 c. coordinates
 d. output

70 ms → 50 ms → 6 ms
 pre-processing → on the fly

6 s → 20 s → 50 s → 165 ms

⟶ ×100 - ×1,000 faster, lighter
and fully differentiable.
Scaling up geometric deep learning and optimal transport [SFL+21]

0. Input data
1. Pre-alignment
Zoom!
2. Deep registration
3. Fine-tuning
Recap on compilation

• Turning scientific code into optimal binaries is an open problem:
 → Massive room for improvement on the software side.
 → Valuable and impactful skill.

• Symbolic matrices are to geometric ML what sparse matrices are to graph processing:
 → KeOps: x30 speed-up vs. PyTorch, TF et JAX.
 → Useful in a wide range of settings.

• These tools open new paths for geometers and statisticians:
 → GPUs are more versatile than you think.
 → Ongoing work to provide fast GPU backends to researchers,
 going beyond what Google and Facebook are ready to pay for.
Optimized AI cores
NVIDIA A100 GPU – the flagship AI chip as of 2020-22.
GA100 architecture with all 128 blocks. **A100 GPU = 108** functional blocks.
“Physical” **CUDA block** or Streaming Multiprocessor:

- 192 KB of **Shared** memory.
- **4 squads** of “physical threads” or warps with:
 - 64 KB of **Thread** memory.
 - **16 int-32** cores.
 - **16 float-32** cores.
 - **8 float-64** cores.
 - **1 Tensor core.**
Integer cores: handle memory addresses – Float-32 cores: great for 3D geometry

1 sign bit 31 significand bits

\[1 - 2^{-31} - +2^{+31} \approx \pm 2,147,483,647 \]

1 sign 8 exponent 23 significand

\[2^{-126} - 2^{+127} \approx 10^{-38} - 10^{+38} \]
\[1 + 2^{-23} \approx 1.000\,000\,001 \]
Float-64 cores: great for physics simulation

1 sign 11 exponent 52 significand

\[2^{-1022} - 2^{+1023} \approx 10^{-308} - 10^{+308} \]

\[1 + 2^{-52} \approx 1.000\,000\,000\,000\,000\,000\,2 \]
Tensor cores: great for CNNs and transformers

1 sign 8 exponent 7 significand

\[2^{-126} - 2^{127} \approx 10^{-38} - 10^{38} \]

\[1 + 2^{-7} \approx 1.007 \]

256 bits \(\approx 4 \times 4 \) bfloat-16
Trading speed vs. power consumption vs. versatility vs. manufacturing costs

“How do Smartphone CPUs Work?”
by Branch Education.

Tensor Processing Units,
by Google.
The CPU vs. GPU uncoupling occurred in the early 2000’s.
Computing power available to ML researchers

Flops

1990 2000 2010 2020

1G
100 M
10 G
100 G
1 T
10 T
100 T

Focus on math
Theano, Caffe
TF, PyTorch...

AWS, GCE
Jean Zay...

Covid
Sustained growth
Local supply
War in Taiwan

Miracle

Focus on math
Conclusion
What is AI research about?

[Car] [Car] [Bicycle] [Car] [Train]

Insider's view:
professional.

Outsider's view:
enthusiast.

Tunnel vision on a single angle ⟹ high risk career.

Biggest success of the 1848 gold rush: Levi’s blue jeans.
ML research is 100% interdisciplinary – a mind map of my own PhD experience
Research is a deeply social and diverse activity
Some early career advice

1. **You** bring more to the table than your **potential advisor**:
 - **Full-time** focus on a subject = only during your PhD.
 - Your **leverage**: show that you are skilled and **reliable**.

2. **Tutoring time** + open research area ≫ Prestige:
 - Avoid **crowded** teams and topics.
 - Outstanding environments **outside** of Paris/London/Boston/SF…
 - Connect in conferences and **workshops**.
Some early career advice

3. Different **countries**, different **people**, different **perspectives**.
 Who is the “**main character**” of a PhD thesis?
 - I believe that it should be the **student**.
 - Some people think that it is the **advisor**.

4. **Personal chemistry** + **general** research area \gg Precise topic:
 - A PhD that goes according to plan is a bit disappointing anyway ;-)
 - **Meet** team members (including **students**)! before signing a long-term contract.
 - **Internship** \simeq trial period, goes both ways.
Befriend domain experts – Find your own balance

What you love
What you are good at
What the world needs
What you can be paid for

Passion
Poverty
Mission
Vanity
Ikigai
Doubt
Emptiness
Profession
Vocation

61
Encyclopædia Britannica.

Ideal gas.

Grégoire Clarté, Antoine Diez, and Jean Feydy.

Collective proposal distributions for nonlinear MCMC samplers: Mean-field theory and fast implementation.

Datumizer.

Solar system orrery inner planets.

CC BY-SA 4.0.

Pierre Degond, Amic Frouvelle, Sara Merino-Aceituno, and Ariane Trescases.

Alignment of self-propelled rigid bodies: from particle systems to macroscopic equations.

Pierre Degond and Sébastien Motsch.

Continuum limit of self-driven particles with orientation interaction.

Erich Dornberger.

Prediction of OSF ring dynamics and grown-in voids in Czochralski silicon crystals.

Olivier Ecabert, Jochen Peters, and Matthew Walker.

Segmentation of the heart and great vessels in ct images using a model-based adaptation framework.

Anna Frodesiak.

Traffic jam at 17:30 downtown Haikou city, Hainan province, China.

Public domain.

Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning.

Henrik.

This diagram illustrates the ray tracing algorithm for rendering an image.

CC BY-SA 4.0.
Ronny Krashinsky, Olivier Giroux, Stephen Jones, Nick Stam, and Sridhar Ramaswamy.

Nvidia ampere architecture in-depth.

Chris Lattner.

The architecture of open source applications – llvm.

Florent Leclercq.

Bayesian optimization for likelihood-free cosmological inference.

Mohammad Sina Nabizadeh, Stephanie Wang, Ravi Ramamoorthi, and Albert Chern.

Covector fluids.

Peellden.

A 12-inch silicon wafer.

CC BY-SA 3.0.

Gabriel Peyré.

The numerical tours of signal processing-advanced computational signal and image processing.

Freyr Sverrisson, Jean Feydy, Bruno E. Correia, and Michael M. Bronstein.

Fast end-to-end learning on protein surfaces.

Zhengyang Shen, Jean Feydy, Peirong Liu, Ariel H Curiale, Ruben San Jose Estepar, Raul San Jose Estepar, and Marc Niethammer.

Accurate point cloud registration with robust optimal transport.

Freyr Sverrisson, Jean Feydy, Joshua Southern, Michael M Bronstein, and Bruno Correia.

Physics-informed deep neural network for rigid-body protein docking.

Peter Shirley.

Ray tracing in one weekend, December 2020.

https://raytracing.github.io/books/RayTracingInOneWeekend.html.