
Geometric data analysis
Lecture 7/7 – GPU programming

Jean Feydy
HeKA team, Inria Paris, Inserm, Université Paris-Cité

Thursday, 9am–12pm – 7 lectures

Faculté demédecine, Hôpital Cochin, rooms 2001 + 2005

Validation: project + quizz

1

Towards a continuous analysis of large datasets [Pey11, EPW11]

1

23

54
6

Simple graph. Manifold hypothesis. Physicalmanifold.

2

Long history in physics [Dat18, Bri, NWRC22]

The Solar system. The ideal gasmodel. Fluid simulation.

Research in physics ⟺ High Performance Supercomputers
Only available through large institutional centers.

3

Recent history around video games andmovies

FFVII on the PS1 – 1997. FFVII on the PS4 – 2020. Jensen Huang – 2022.

Research in graphics ⟺ Graphics Processing Units
Affordable to any researcher: game-changer.

4

The “AI revolution” is primarily driven by hardware

Statistics and Machine Learning have been around for decades.
Breakthrough in 2010-15: hacking PlayStations for science became easy.

As AI researchers, wemust understand:

1. What is a GPU?

• Thousands of cores, complexmemorymanagement.
• 4 rules of GPU programming.

2. Current trends in the semiconductor industry

• Just-in-time compilation, custom AI chips.
• Supply chain issues and their impact on our careers.

5

Accessible references

Coming from amath background:

• Chapter 2 of my PhD thesis, Geometric data analysis, beyond convolutions.
• Albert Chern’s lecture notes at UCSD, Introduction to computer graphics.

Two YouTube channels to learn about hardware:

• Branch Education – to understand the circuits.
• Asianometry – to get some context on the industry.

Great software documentation – the source of Nvidia’s monopoly in research:

• Mark Harris’ posts on the Nvidia dev blog, GPU Gems textbooks.
• CUDA toolkit documentation, CUTLASS, CUB.

6

What is a GPU?

Nvidia focuses its marketing on economies of scale

Mythbusters Demo GPU versus CPU – 2009. 7

Nvidia focuses its marketing on economies of scale

Simple message: 10,000 cores ⟹ x1,000 acceleration vs. a 10-core CPU.
But how did we fill those tubeswith the correct paintballs?

8

Scientific programs arememory bound [Fro12]

The curse of parallelism:
traffic jams.

Structure is required. Design choices
favor “bankable” program architectures.

9

Let’s open up a GPU

10

Let’s open up a GPU

7,000 cores on a single GPU. The Turing architecture.

11

GPUs and large administrations follow the same plan

GPU ≃ 100 redundant blocks. Inside a CUDA block: workers and buffers.

12

Redundancy is key to recover high yields in spite of defects [Dor97, Pee11]

Silicon crystal. Chips are etched onto silicon wafers.

GeForce RTX 3090 > GeForce RTX 3080 > GeForce RTX 3070 > …
13

GPUs are optimized to render 3Dmeshes in real time [Hen08, Shi20]

Light Source

Scene Object

Shadow RayView Ray

Image
Camera

Simulating light rays. Ray tracing in one weekend.

Nvidia GeForce RTX (Ray Tracing Texel eXtreme)
⟺ Geometric computations + textures, on independent patches of the screen.

14

5main layers of memory storage

1 GPU ≃ 100 blocks of 100 cores.

On the CPU host:
• HDD / SSD – 1 TB.
• Host RAM – 100 GB.

On the GPU device:
• Device RAM – 10 GB.
• Shared block-wisememories – 1 Kb/core.
• Thread-wise registers – 1 Kb/core.

Time(Device RAM ↔ Core) ≃ 100 arithmetic operations.

HDD / SSD

Host RAM

CPU cores

Device RAM

GPU cores

Shared mem.

Thread mem.

15

4 rules of GPU programming

1. Promote block-wise parallelism.

2. ReduceHost ↔ Devicememory transfers.

3. Reduce Device ↔ Shared/Threadmemory transfers.

4. Promote block-wise, contiguousmemory accesses.

HDD / SSD

Host RAM

CPU cores

Device RAM

GPU cores

Shared mem.

Thread mem.

16

The CUDA toolkit – a C++ dialect for GPU programming

__global__ void
My_CUDA_kernel(int param, float *device_data, float *device_output) {

// We use the indices of the current thread and CUDA block
// to assign each worker to its place in the computation plan:
int i = blockIdx.x * blockDim.x + threadIdx.x;

// We declare local variables as in standard C++.
// They'll be stored in the Thread memory whenever possible:
float some_value = 0;
// We access the Shared memory through a raw C++ pointer:
extern __shared__ float shared_mem[];

// We handle transfers with a transparent interface:
some_value = device_data[i]; // Thread memory <- Device RAM
shared_mem[i] = device_data[i]; // Shared memory <- Device RAM

17

The CUDA toolkit – a C++ dialect for GPU programming

// Computations are written in standard C++ and executed in parallel
// by all the threads of the CUDA block:
for(int k = 0; k < param; k++) {

some_value = some_value + k * shared_mem[i];
...

}

// We may create checkpoints for all threads in a CUDA block.
// This may impact performances.
__syncthreads();

// We write results back to the Device RAM with:
device_output[i] = some_value; // Device RAM <- Thread memory

} 18

The CUDA toolkit – a C++ dialect for GPU programming

// The main C++ program, executed by the CPU:
int main(void) {

int N = 1024; float *host_data, *host_out, *device_data, *device_out;

// Allocate memory on the device - the API is a bit heavy:
cudaMalloc((void**) &device_data, N * sizeof(float));

// Device RAM <- Host RAM:
cudaMemcpy(device_data, host_data, N * sizeof(float),

cudaMemcpyHostToDevice);

// Set the parameters of the CUDA block:
int block_size = 128; int grid_size = N / block_size;
int shared_mem_size = 2 * block_size * sizeof(float);
// Run the GPU kernel:
My_CUDA_kernel<<<grid_size, block_size, shared_mem_size>>>(...);

19

The CUDA toolkit – a C++ dialect for GPU programming

// Wait for the GPU to finish its computations:
cudaDeviceSynchronize();

// Host RAM <- Device RAM:
cudaMemcpy(host_out, device_out, N * sizeof(float),

cudaMemcpyDeviceToHost);

// Process and save the result "output array":
...

// Don't forget to free the allocated memory:
cudaFree(device_data);

// And exit gracefully:
return 0;

} 20

Recap on GPUs

1,000 € = 1 GPU = 100 × 100 cores with 5 main layers of memory:

• Large arrays are slow: Memory read/write ≫ Arithmetics.
• Fast buffers are small: 1 KB ≃ 100 float numbers per core.

To optimize the Shared and Threadmemories: C++ or Assembly.

Most scientists rely on pre-existing libraries of CUDA kernels
and never dig deeper than the GPU Device RAM.

21

A practical example: nearest neighbor search

import torch
x = torch.rand(M, D) # (M, D)
y = torch.rand(N, D) # (N, D)

diff = x.view(M,1,D) - y.view(1,N,D) # (M, N, D)
diff2 = diff ** 2 # (M, N, D)
sqdists = diff2.sum(dim=2) # (M, N)
indices = sqdists.argmin(dim=1) # (M,)

Bottleneck:
(M × N × D) CPU operations andmemory transfers.

HDD / SSD

Host RAM

CPU cores

Device RAM

GPU cores

Shared mem.

Thread mem.

22

A practical example: nearest neighbor search

import torch
x_ = torch.rand(M, D) # (M, D)
y_ = torch.rand(N, D) # (N, D)
x = x_.cuda() # (M, D)
x = y_.cuda() # (N, D)

diff = x.view(M,1,D) - y.view(1,N,D) # (M, N, D)
diff2 = diff ** 2 # (M, N, D)
sqdists = diff2.sum(dim=2) # (M, N)
indices = sqdists.argmin(dim=1) # (M,)

Bottleneck:
(M × N × D) Device↔Threadmemory transfers.

HDD / SSD

Host RAM

CPU cores

Device RAM

GPU cores

Shared mem.

Thread mem.

23

A practical example: nearest neighbor search

import torch
x = torch.rand(M, D).cuda() # (M, D)
y = torch.rand(N, D).cuda() # (N, D)

Use that |x-y|^2 = |x|^2 - 2 (x.y) + |y|^2:
dots = x @ y.T # (M, N)
sq_y = (y ** 2).sum(dim=1) # (N,)

sqdists = - 2 * dots + sq_y.view(1,N) # (M, N)
indices = sqdists.argmin(dim=1) # (M,)

Bottleneck:
(M × N × D) GPU computations if D > 100,

(M × N) Device↔Threadmemory transfers otherwise.

HDD / SSD

Host RAM

CPU cores

Device RAM

GPU cores

Shared mem.

Thread mem.

24

A practical example: nearest neighbor search

On-the-fly, tiled reduction: optimal memorymanagement.
Bottleneck: (M × N × D) GPU computations. 25

Recap on nearest neighbor search

∀ 𝑖 ∈ [1, M] , index[𝑖] ← arg
N

min
𝑗=1

D
∑
𝑘=1

(𝑥[𝑖, 𝑘] − 𝑦[𝑗, 𝑘])2

• Each improvement provides a ×10 to ×100 speed-up.

• Going even further, for structured data:

• Clusterize the two point clouds.
• Sort them to ensure that the clusters are contiguous in memory.
• Skipwhole blocks of the tiled distance matrix.

• Standard benchmarks (ann-benchmarks.com) and libraries: FAISS…

26

Compilation

Compilation is a major bottleneck in computer science

∀ 𝑖 ∈ [1, M] , index[𝑖] ← arg
N

min
𝑗=1

D
∑
𝑘=1

(𝑥[𝑖, 𝑘] − 𝑦[𝑗, 𝑘])2

• We have seen 4-5 different strategies, increasingly fast but complex.
• Optimal schemes for M < 1,000 look completely different.

Naive GPU implementations are often x100–x1,000 too slow.

Reaching optimal run times is hard.

27

Compilation is a deep scientific problem

The 4 color theorem. 4-coloring a planar graph.
28

Register allocation via k-coloring of the interference graph

def f(a)�
 b = a �� 2
 c = 5 * b
 d = c + 6
 return d

function(R1)�
 R2 = R1 �� 2
 R1 = 5 * R2
 R2 = R1 + 6
 return R2

line 1

line 2

line 3

a b

c d

a b

c d

Register 1 Register 2

29

LLVM: a welcome consolidation [Lat11]

C frontend

Fortran frontend

Ada frontend

Common
optimizer

x86 backend

PowerPC backend

ARM backend

30

Just-in-time compilation

Dream: turn high-level Python code into an optimal GPU binary.

Reality: very hard combinatorial problem, task-specific heuristics.

Existing libraries focus on different targets:

• Shaders for 3Dmeshes.
• Convolutions on 2D and 3D grids – with varying filter sizes, channels…
• Fusion ofmatrix multiplications and non-linearities for MLPs, Transformers.

⟹ A critical mass is required to attract investments.

What about geometric ML?

31

Computing libraries represent most objects as tensors

Context. Constrainedmemory accesses on the GPU:

• Long access times to the registers
penalize the use of large dense arrays.

• Hard-wired contiguousmemory accesses
penalize the use of sparsematrices.

Challenge. In order to reach optimal run times:

• Restrict ourselves to operations that are supported
by the constructor: convolutions, FFT, etc.

• Develop new routines from scratch in C++/CUDA
(FAISS, KPConv…): several months of work.

M[i , j]

Dense array

(in, jn, Mn)

Sparsematrix 32

The KeOps library: efficient support for symbolic matrices

Solution. KeOps – www.kernel-operations.io:

• For PyTorch, NumPy, Matlab and R, on CPU and GPU.
• Automatic differentiation.
• Just-in-time compilation of optimized C++ schemes,
triggered for every new reduction: sum, min, etc.

If the formula “F” is simple (⩽ 100 arithmetic operations):
“100k × 100k” computation → 10ms – 100ms,
“1M × 1M” computation → 1s – 10s.

Hardware ceiling of 1012 operations/s.
×10 to ×100 speed-up vs standard GPU implementations

for a wide range of problems.

F(xi , yj)

Symbolic matric
Formula + data

• Distances d(xi,yj).
• Kernel k(xi,yj).
• Numerous
transforms.

33

A first example: efficient nearest neighbor search in dimension 50

Create large point clouds using standard PyTorch syntax:
import torch
N, M, D = 10**6, 10**6, 50
x = torch.rand(N, 1, D).cuda() # (1M, 1, 50) array
y = torch.rand(1, M, D).cuda() # (1, 1M, 50) array

Turn dense arrays into symbolicmatrices:
from pykeops.torch import LazyTensor
x_i, y_j = LazyTensor(x), LazyTensor(y)

Create a large symbolic matrix of squared distances:
D_ij = ((x_i - y_j) ** 2).sum(dim=2) # (1M, 1M) symbolic

Use an .argmin() reduction to perform a nearest neighbor query:
indices_i = D_ij.argmin(dim=1) # -> standard torch tensor

34

The KeOps library combines performance with flexibility

Script of the previous slide = efficient nearest neighbor query,
on parwith the bruteforce CUDA scheme of the FAISS library…

And can be used with anymetric!

D_ij = ((x_i - x_j) ** 2).sum(dim=2) # Euclidean
M_ij = (x_i - x_j).abs().sum(dim=2) # Manhattan
C_ij = 1 - (x_i | x_j) # Cosine
H_ij = D_ij / (x_i[...,0] * x_j[...,0]) # Hyperbolic

KeOps supports arbitrary formulas and variableswith:

• Reductions: sum, log-sum-exp, K-min, matrix-vector product, etc.
• Operations: +, ×, sqrt, exp, neural networks, etc.
• Advanced schemes: batch processing, block sparsity, etc.
• Automatic differentiation: seamless integration with PyTorch. 35

KeOps lets users work withmillions of points at a time

Benchmark of a Gaussian convolution
between clouds of N 3D points on a RTX 2080 Ti GPU.

100 1k 10k 100k 1M

1ms

10ms

100ms

1 s

10 s

out of memory!

Number of points N

Ti
m
e

NumPy (CPU)

PyTorch (GPU)

KeOps (GPU)

36

KeOps is a good fit for machine learning research

K-Means. Gaussian Mixture Model.

Use any kernel, metric or formula you like!
37

KeOps is a good fit for machine learning research

Spectral analysis. UMAP in hyperbolic space.

Use any kernel, metric or formula you like!
38

Applications to Kriging, spline, Gaussian process, kernel regression

A standard tool for regression [Lec18]:

Under the hood, solve a kernel linear system:

(𝜆 Id + 𝐾𝑥𝑥) 𝑎 = 𝑏 i.e. 𝑎 ← (𝜆 Id + 𝐾𝑥𝑥)−1𝑏

where 𝜆 ⩾ 0 et (𝐾𝑥𝑥)𝑖,𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗) is a positive definite matrix.
39

Applications to Kriging, spline, Gaussian process, kernel regression

KeOps symbolic tensors (𝐾𝑥𝑥)𝑖,𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗) :

• Can be fed to standard solvers: SciPy, GPyTorch, etc.

• GPytorch on the 3DRoad dataset (N = 278k, D = 3):
7h with 8 GPUs → 15mnwith 1 GPU.

• Provide a fast backend for research codes:
see e.g. Kernel methods through the roof: handling billions of points efficiently,
by G. Meanti, L. Carratino, L. Rosasco, A. Rudi (2020).

40

KeOps lets researchers focus on their models, results and theorems

Some applications to dynamical systems [DM08, DFMAT17]
and statistics [CDF19] with A. Diez, G. Clarté et P. Degond:

3D Vicsek model with orientation,
interactive demo with 2k flyers.

2D Vicsek model on the torus,
in real-time with 100k swimmers.

41

KeOps lets researchers focus on their models, results and theorems

⟹ Scale up tomillions/billions of agents with Python scripts.

Packing problem in 2D
with 10k repulsive balls.

Collective Monte Carlo sampling
on the hyperbolic Poincaré disk.

42

Scaling up geometric deep learning [GSM+20, SFCB20, SFS+22]

1. MaSIF

2. dMaSIF

atoms
a. surface mesh b. features c. patches d. output

a. points, normals b. features c. coordinates d. output

6 s 20 s 50 s

70ms 50ms 6ms 40ms

165ms

pre-processing on the fly

⟶ ×100 -×1,000 faster, lighter
and fully differentiable.

43

Scaling up geometric deep learning and optimal transport [SFL+21]

44

Recap on compilation

• Turning scientific code into optimal binaries is an open problem:
⟶ Massive room for improvement on the software side.
⟶ Valuable and impactful skill.

• Symbolic matrices are to geometricML what
sparsematrices are to graph processing:

⟶ KeOps: x30 speed-up vs. PyTorch, TF et JAX.
⟶ Useful in a wide range of settings.

• These tools open new paths for geometers and statisticians:
⟶ GPUs are more versatile than you think.
⟶ Ongoing work to provide fast GPU backends to researchers,

going beyond what Google and Facebook are ready to pay for.
45

Optimized AI cores

Nvidia Ampere architecture in-depth [KGJ+20]

NVIDIA A100 GPU – the flagship AI chip as of 2020-22.
46

Nvidia Ampere architecture in-depth [KGJ+20]

GA100 architecture with all 128 blocks. A100 GPU = 108 functional blocks.
47

Nvidia Ampere architecture in-depth [KGJ+20]

“Physical” CUDA block or Streaming Multiprocessor:

• 192 KB of Sharedmemory.

• 4 squads of “physical threads” or warps with:

• 64 KB of Threadmemory.
• 16 int-32 cores.
• 16 float-32 cores.
• 8 float-64 cores.
• 1 Tensor core.

48

Integer cores: handle memory addresses – Float-32 cores: great for 3D geometry

31 significand bits

+

+
=

1 sign bit 23 significand

+

+
=

1 sign 8 exponent

2 — 2 ≃ 10 — 10
-126 +127 -38 +38

1 + 2 ≃ 1 . 000 000 1-23
1-2 — +2 ≃ ± 2,147,483,647

 +31 -31

49

Float-64 cores: great for physics simulation

52 significand

+

+
=

1 sign 11 exponent

2 — 2 ≃ 10 — 10
-1022 +1023 -308 +308

1 + 2 ≃ 1 . 000 000 000 000 000 2-52

50

Tensor cores: great for CNNs and transformers

7 significand1 sign 8 exponent

256 bits ≃ 4x4 bfloat-16 2 — 2 ≃ 10 — 10
-126 +127 -38 +38

1 + 2 ≃ 1 . 007-7

+ + =

51

Trading speed vs. power consumption vs. versatiliy vs. manufacturing costs

“How do Smartphone CPUsWork?”
by Branch Education.

Tensor Processing Units,
by Google.

52

The CPU vs. GPU uncoupling occured in the early 2000’s

Flops

1990 2000 2010 2020

1G

100 M

10 G

100 G

1 T

10 T

100 T

GPUs

CPUs

53

Computing power available to ML researchers

Flops

1990 2000 2010 2020

1G

100 M

10 G

100 G

1 T

10 T

100 T

Focus on math

Theano, Caffe
TF, PyTorch...

AWS, GCE
Jean Zay...

Covid

Miracle

Sustained growth

Local supply

War in Taiwan

54

Conclusion

A geometric tour of data science

1

2

3

4

5

6

1
2
3
4
5
6

+

+

55

What is AI research about?

Insider's view:
professional.

Outsider's view:
enthusiast.

Tunnel vision on a single angle ⟹ high risk career.
Biggest success of the 1848 gold rush: Levi’s blue jeans.

56

ML research is 100% interdisciplinary – amindmap of my own PhD experience

57

Research is a deeply social and diverse activity

58

Some early career advice

1. You bring more to the table than your potential advisor:

• Full-time focus on a subject = only during your PhD.
• Your leverage: show that you are skilled and reliable.

2. Tutoring time + open research area ≫ Prestige:

• Avoid crowded teams and topics.
• Outstanding environments outside of Paris/London/Boston/SF…
• Connect in conferences andworkshops.

59

Some early career advice

3. Different countries, different people, different perspectives.
Who is the “main character” of a PhD thesis?

• I believe that it should be the student.
• Some people think that it is the advisor.

4. Personal chemistry + general research area ≫ Precise topic:

• A PhD that goes according to plan is a bit disappointing anyway ;-)
• Meet teammembers (including students!) before signing a long-term contract.
• Internship ≃ trial period, goes both ways.

60

Befriend domain experts – Find your own balance

What you
love

What you
are good

at

What the
world
needs

What you can
be paid for

VocationProfession

Passion Mission

Ikigai

Poverty

Emptiness

Vanity Doubt

61

References

References i

Encyclopædia Britannica.

Ideal gas.

https://www.britannica.com/science/ideal-gas.

Grégoire Clarté, Antoine Diez, and Jean Feydy.

Collective proposal distributions for nonlinear MCMC samplers: Mean-field
theory and fast implementation.

arXiv preprint arXiv:1909.08988, 2019.

62

References ii

Datumizer.

Solar system orrery inner planets.

https://commons.wikimedia.org/wiki/File:Solar_system_orrery_inner_planets.gif,
2018.

CC BY-SA 4.0.

Pierre Degond, Amic Frouvelle, Sara Merino-Aceituno, and Ariane Trescases.

Alignment of self-propelled rigid bodies: from particle systems tomacroscopic
equations.

63

https://commons.wikimedia.org/wiki/File:Solar_system_orrery_inner_planets.gif

References iii

In International workshop on Stochastic Dynamics out of Equilibrium, pages 28–66.
Springer, 2017.

Pierre Degond and Sébastien Motsch.

Continuum limit of self-driven particles with orientation interaction.

Mathematical Models and Methods in Applied Sciences, 18(supp01):1193–1215, 2008.

64

References iv

Erich Dornberger.

Prediction of OSF ring dynamics and grown-in voids in Czochralski silicon
crystals.

PhD thesis, UCL-Université Catholique de Louvain, 1997.

Olivier Ecabert, Jochen Peters, and MatthewWalker.

Segmentation of the heart and great vessels in ct images using amodel-based
adaptation framework.

Medical Image Analysis, (15):863–876, 2011.

65

References v

Anna Frodesiak.

Traffic jam at 17:30 downtown haikou city, hainan province, china.

https://commons.wikimedia.org/wiki/File:
Traffic_jam_in_Haikou,_Hainan,_China_01.jpg, 2012.

Public domain.

Pablo Gainza, Freyr Sverrisson, Frederico Monti, Emanuele Rodola, D Boscaini,
MM Bronstein, and BE Correia.

Deciphering interaction fingerprints from proteinmolecular surfaces using
geometric deep learning.

66

https://commons.wikimedia.org/wiki/File:Traffic_jam_in_Haikou,_Hainan,_China_01.jpg
https://commons.wikimedia.org/wiki/File:Traffic_jam_in_Haikou,_Hainan,_China_01.jpg

References vi

Nature Methods, 17(2):184–192, 2020.

Henrik.

This diagram illustrates the ray tracing algorithm for rendering an image.

https://commons.wikimedia.org/wiki/File:Ray_trace_diagram.svg, 2008.

CC BY-SA 4.0.

67

https://commons.wikimedia.org/wiki/File:Ray_trace_diagram.svg

References vii

Ronny Krashinsky, Olivier Giroux, Stephen Jones, Nick Stam, and Sridhar
Ramaswamy.

Nvidia ampere architecture in-depth.

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/, 2020.

Chris Lattner.

The architecture of open source applications – llvm.

https://www.aosabook.org/en/llvm.html, 2011.

68

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://www.aosabook.org/en/llvm.html

References viii

Florent Leclercq.

Bayesian optimization for likelihood-free cosmological inference.

Physical Review D, 98(6):063511, 2018.

Mohammad Sina Nabizadeh, Stephanie Wang, Ravi Ramamoorthi, and Albert Chern.

Covector fluids.

ACM Transactions on Graphics (TOG), 41(4):113:1–113:15, 2022.

69

References ix

Peellden.

A 12-inch silicon wafer.

https://commons.wikimedia.org/wiki/File:12-inch_silicon_wafer.jpg, 2011.

CC BY-SA 3.0.

Gabriel Peyré.

The numerical tours of signal processing-advanced computational signal and
image processing.

IEEE Computing in Science and Engineering, 13(4):94–97, 2011.

70

https://commons.wikimedia.org/wiki/File:12-inch_silicon_wafer.jpg

References x

Freyr Sverrisson, Jean Feydy, Bruno E. Correia, and Michael M. Bronstein.

Fast end-to-end learning on protein surfaces.

bioRxiv, 2020.

Zhengyang Shen, Jean Feydy, Peirong Liu, Ariel H Curiale, Ruben San Jose Estepar,
Raul San Jose Estepar, and Marc Niethammer.

Accurate point cloud registration with robust optimal transport.

Advances in Neural Information Processing Systems, 34:5373–5389, 2021.

71

References xi

Freyr Sverrisson, Jean Feydy, Joshua Southern, Michael M Bronstein, and Bruno
Correia.

Physics-informed deep neural network for rigid-body protein docking.

In ICLR2022 Machine Learning for Drug Discovery, 2022.

Peter Shirley.

Ray tracing in one weekend, December 2020.

https://raytracing.github.io/books/RayTracingInOneWeekend.html.

72

	What is a GPU?
	Compilation
	Optimized AI cores
	Conclusion
	References

