Geometric data analysis

Lecture 1/7 – Introduction

Jean Feydy HeKA team, Inria Paris, Inserm, Université Paris-Cité

Thursday, 9am-12pm - 7 lectures

Faculté de médecine, Hôpital Cochin, rooms 2001 + 2005

Validation: project + quizz

Background in mathematics and data sciences:

2012–2016 ENS Paris, mathematics.

2014–2015 M2 mathematics, vision, learning at ENS Cachan.

2016–2019 PhD thesis in **medical imaging** with Alain Trouvé at ENS Cachan.

2019–2021 Geometric deep learning with Michael Bronstein at Imperial College.

2021+ Medical data analysis in the HeKA INRIA team (Paris).

Close ties with **healthcare**:

- 2015 Image denoising with Siemens Healthcare in Princeton.
- 2019+ MasterClass AI-Imaging, for radiology interns in the University of Paris.
- 2020+ Colloquium on Medical imaging in the AI era at the Paris Brain Institute.

My motivation: medical data analysis

Three main characteristics:

- Heterogeneous data: patient history, images, etc.
- Small stratified samples: 10 1 000 patients per group.
- Dealing with **outliers** and the **heavy tails** of our distributions is a priority.

Computational anatomy. 3D medical scans:

- 100k triangles to represent a brain surface.
- $512x512x512 \simeq 130$ M voxels for a typical 3D image.

Public health. Over the last decade, medical datasets have blown up in size:

- Clinical trials: 1k patients, controlled environment.
- UK Biobank: 500k people, curated data.
- French Health Data Hub: **70M people**, full social security data since ~2000.

Medical doctors, pharmacists and governments need scalable methods.

Some research interests

Optimal transport for shape registration.

Geometric deep learning for protein docking.

Survival analysis for pharmaco-vigilance.

At the intersection of three communities :

- Al experts in Paris, London...
- Students at the ENS, the MVA, Epita.
- Medical doctors among colleagues, friends and family.

Al in healthcare : massive gap between what we know, what we hope, what we fear.

What do **you** think?

"Artificial intelligence" is a misleading term

Al seduces, questions, protects or threatens... But doesn't explain much !

Among experts, researchers always talk about **models**, discuss their underlying **hypotheses** and study their **properties**.

The aim of this class is to give you a structured perspective on the field.

- 1. Present a **quick overview** of models that you are likely to encounter.
- 2. Highlight their underlying hypotheses, strengths and weaknesses.
- 3. Provide you with **clear guidelines** on the use of different tools and theories.
- 4. Discuss the realities of applied machine learning.

Today

1. AI = model + data:

- The curse of dimensionality or why ML is not "just statistics".
- Example: three levels of analysis in anatomy.

2. How can I choose a good model?

- The map is not the territory.
- Example 1: the sphere of triangles.
- Example 2: style transfer with convolutional neural networks.

3. Overview of the class:

- What's coming next?
- Setup on the computers.

1. AI = model + data

What is a dataset?

Supervised learning = Regression.

We look for a formula $F(x_1, ..., x_D)$ of the D variables that best approximates an important quantity (\heartsuit).

A simple model: linear regression

We choose the weights **a**, **b**, ..., **f** by minimizing a least squares error.

The standard setting of low-dimensional statistics [Las]

First applications to astronomy, with **hundreds of observations** on a **handful of variables**.

Problem: medicine isn't XIXth century astronomy

With lots of information about few patients,

we quickly "discover" spurious correlations. This is known as **overfitting**.

Having access to **more patients** is usually a **good** thing. But getting **more information** about each patient is **very dangerous**.

In the previous example: knowing the **color** of the candy led the (imprudent) scientists to **over-interpret** a random fluctuation.

Machine learning is about doing **reliable** statistics in this dangerous setting.

We must regularize our decision rules - using sparsity

A **sparse** model will select 5 or 10 important columns. This is useful to handle **tabular data** (XGBoost...) or **identify sources** in signal processing (Lasso...).

We must regularize our decision rules - using a domain-specific structure

A **structured** model will leverage the **geometry of the data**. Think about the main **food groups** or the ATC classification for **medical drugs**.

A first example: medical imaging

A medical image is a massive lump of data

Each pixel is a **column** in our dataset! We observe **millions to billions of variables** on cohorts of **a few thousand patients**.

Sampling the full space of medical images is impossible

The set of all 2D/3D images is **way too large** to be sampled with a satisfying accuracy.

First remark: we cannot rely on sparsity

A good radiology exam does not rely exclusively on **5 or 10 pixels**. We must learn how to **group pixels** in relevant bundles.

1. Pixels

1. Pixels 2. Anatomy

1. Pixels

Outlet dilates Septum stays flat Free wall becomes rounder Valve dilation BSA (in m²) 2.2 (+2σ) 1.3 (-σ) 1.9 (+σ) 1.0 (-2σ) 1.6 (mean)

2. Anatomy

1. Pixels 2. Anatomy 3. Function

Simplifying a bit, each level of analysis corresponds to a way of **grouping pixels** with their neighbors.

 $N_x \times N_y \times N_z$ array of pixels.

Bitmap images and volumes:

- .bmp, .png, .jpg
- Standard in **radiology**.
- + Ordered memory structure.
- + Explicit neighborhoods.
- + Fast convolutions.
- \rightarrow **Texture** analysis.
- \rightarrow Organ segmentation.
- \rightarrow Pattern **detection**.

2nd level: point clouds and 3D surfaces [EPW11]

 $N_{points} \times 3 \text{ array of } (x,y,z) \text{ coordinates.}$

Clouds of points (\pm triangles):

- .svg
- Standard for video games.
- + Compact representation.
- + High precision geometry.
- + Easy to deform.
- ightarrow 3D visualization.
- \rightarrow Anatomical **atlas**.
- \rightarrow **Shape** analysis.

3rd level: biomechanical and/or physiological model [Man11]

Mechanical/biological model:

- Finite elements, networks.
- Standard for CAD.
- + Prior knowledge.
- + Robust to noise.
- + Realistic behaviour.
- \rightarrow **Physiological** interpretation.
- \rightarrow **Infer** what cannot be seen (blood flow).
- \rightarrow **Simulate** a surgery.

We must combine a statistical regression method with a relevant model.

In medical imaging, we may work with:

- 1. A 2D or 3D **pixel grid**.
- 2. An array of (x, y, z) coordinates.
- 3. A **web** of complex interactions.
- 4. Everything at once!

In most cases, we will define a large structured formula:

 $\mathsf{image} \overset{\mathsf{F}}{\longrightarrow} \mathsf{F}\left(\mathsf{image}\right) \simeq \mathsf{diagnostic}$

F is a parametric computing **architecture** \simeq **model** to fit \simeq **network** to train.

2. How can I choose a good model?

A model is like a map: a warped and partial view of the world [Duk, Str]

A map is not the territory it represents, but, if correct, it has a **similar structure** to the territory, which accounts for its **usefulness**.

– Alfred Korzybski, 1933.

...In that empire, the art of cartography attained such **perfection** that the map of a single **province** occupied the entirety of a **city**, and the map of the **empire**, the entirety of a **province**. In time, those unconscionable maps no longer satisfied, and the cartographers guilds struck **a map of the empire whose size was that of the empire**, and which coincided point for point with it.

The following generations, who were not so fond of the study of cartography as their forebears had been, saw that **that vast map was useless**, and not without some pitilessness was it, that they delivered it up to the inclemencies of sun and winters. In the **deserts** of the West, still today, there are tattered **ruins of that map**, inhabited by animals and beggars; in all the land there is no other relic of the disciplines of geography.

- Suarez Miranda, Viajes de varones prudentes, Libro IV, Cap. XLV, Lerida, 1658

A good map should:

- **Highlight** the relevant key points and roads. This is a **task-specific** objective (car, bike...).
- **Hide** unnecessary information to reduce clutter: **the lighter, the better**. Heavy maps *will* be discarded by the next generation.
- Be accurate up to a required tolerance.
 There is a tradeoff here: think of the metro map!
- Be **transparent** about **omissions and distortions**. This is the main **trap** that we should not forget.

All these points apply to ML models:

- Highlight the stuff that matters.
- Discard the rest.
- Be **accurate** up to a sensible tolerance.
- Be transparent and honest.

Of course, raw "performance" results do matter: **accuracy** is a real thing.

But most importantly, a good model should be **legible** and enable **creativity**.

Example 1: The sphere of triangles

Surprisingly enough, our story starts with... Menhirs!

More precisely: with the distribution of megaliths in the Land's End peninsula

52 Menhir locations.

Cornwall, in South-West England.

Can you see **alignments** here? Some people do. Many authors have claimed that these **ley lines** demarcate "Earth energies" and/or serve as guides for alien spacecraft. Back in 1974, this problem motivated David Kendall to ask a question:

Assuming that I draw 52 points at random in a square... How many **flat triangles** (say, with a 180° \pm 1° angle) am I going to observe?

This prompted a remarkable series of papers:

- The diffusion of shape, Kendall, 1977.
- Alignments in two-dimensional random sets of points, Kendall and Kendall, 1980.
- Simulating the ley hunter, Broadbent, 1980.
- Shape manifolds, Procrustean metrics, and complex projective spaces, Kendall, 1984.

And the the birth of modern shape analysis.

Step 1: Working with shapes up to similarities [Kli15]

Step 2: The space of triangles up to similarities is two-dimensional

38

Send A to (-1, 0)and B to (+1, 0).

Step 3: Up to a clever change of coordinates: this is actually a sphere!

The two poles correspond to the direct and indirect equilateral triangles

The Equator corresponds to the set of flat triangles

00000 AAAAA -0000 -----1000000 A 4 4 4 4 4 0000 0 A A A A A A 10000 --

41

This representation respects the main **symmetries** of the set of triangles:

- The sets of **isoceles triangles** with respect to A, B and C correspond to three **great circles** that are equally spaced with each other.
- Axial symmetries correspond to a North-South inversion across the Equator.
- The Equator of flat triangles + the meridians of isoceles triangles cut the sphere in **12 pieces**. These exactly correspond to the 6 permutations of the vertices ABC × { the identity or an axial symmetry }.

But there is more!

$$\textbf{K}: (A,B,C) \in \mathbb{R}^{3 \times 2} \backslash \{A=B=C\} \ \mapsto \ \textbf{K}(A,B,C) \in \mathbb{R}^3$$

denotes the **Kendall embedding** from the set of non-degenerate triangles to the sphere of center (0, 0, 0) and diameter 1. (It has an OK-ish expression using cos and sin.)

Then, straightforward computations show that:

 $\min_{\text{similarity } S} \|S(A) - D\|_{\mathbb{R}^2}^2 + \|S(B) - E\|_{\mathbb{R}^2}^2 + \|S(C) - F\|_{\mathbb{R}^2}^2 = \text{Var}(D, E, F) \cdot \|K(A, B, C) - K(D, E, F)\|_{\mathbb{R}^3}^2$

The **chord distance on the sphere** of Kendall corresponds to the **Euclidean distance** on triplets of points in the plane, **up to similarities**.

Statistical properties of the spherical embedding

A, B, C are drawn according to an **isotropic** Gaussian distribution on the plane.

Empirical histogram on the sphere of triangle shapes.

Statistical properties of the spherical embedding

A, B, C are drawn according to a **non-isotropic** Gaussian distribution on the plane.

Empirical histogram on the sphere of triangle shapes.

Statistical properties of the spherical embedding

A, B, C are drawn according to a **non-isotropic** Gaussian distribution on the plane.

Empirical histogram on the sphere of triangle shapes.

Kendall showed that the space of **triangles** is best understood as a **sphere** for **topological**, **geometric** and **statistical** reasons.

You cannot "unsee" this elegant result.

Most importantly, his theorem showed that **shapes** naturally belong to a **curved** geometric space.

This idea is at the heart of modern shape analysis software [KMP07]

Geodesics in spaces of elephants and skeletons.

This idea is at the heart of modern shape analysis software [vRESH16]

Barycentric interpolation in a space of hands.

Example 2: Style transfer with convolutional neural networks

Remember that picture? [EPW11]

1. Pixels 2. Anatomy 3. Function

Let's talk about the **first way** of **grouping pixels** with their neighbors.

Filtering, also known as the "convolution product"

Convolution (i.e. weighted average of the neighboring pixels) : Cheap generalization of the **product** "a \cdot x", parameterized by the coefficients of a **small filter** φ .

 φ

х

 $\varphi \star x$

Filtering, also known as the "convolution product"

Convolution (i.e. weighted average of the neighboring pixels) : Cheap generalization of the **product** "a \cdot x", parameterized by the coefficients of a **small filter** φ .

 φ

х

 $\varphi \star x$
Convolution (i.e. weighted average of the neighboring pixels) : Cheap generalization of the **product** "a \cdot x", parameterized by the coefficients of a **small filter** φ .

 \star

 φ

х

 $\varphi \star x$

Convolution (i.e. weighted average of the neighboring pixels) : Cheap generalization of the **product** "a \cdot x", parameterized by the coefficients of a **small filter** φ .

 φ

х

 $\varphi \star x$

Convolution (i.e. weighted average of the neighboring pixels) : Cheap generalization of the **product** "a \cdot x", parameterized by the coefficients of a **small filter** φ .

 φ

х

 $\varphi \star x$

Convolution (i.e. weighted average of the neighboring pixels) : Cheap generalization of the **product** "a \cdot x", parameterized by the coefficients of a **small filter** φ .

 φ

х

 $\varphi \star \mathbf{X}$

Convolution (i.e. weighted average of the neighboring pixels) : Cheap generalization of the **product** "a \cdot x", parameterized by the coefficients of a **small filter** φ .

 φ

х

 $|\varphi \star \mathbf{X}|$

 \star

 φ

Convolution (i.e. weighted average of the neighboring pixels) : Cheap generalization of the **product** "a \cdot x", parameterized by the coefficients of a **small filter** φ .

х

 $|\varphi \star \mathbf{X}|$

A multi-scale prior on images

Wavelet theory (1990~2010 ; Meyer, Mallat, Daubechies...) : Small filters + cascading zoom-out operations [Mal16]:

 \Rightarrow **JPEG2000** format, standard of the movie industry.

Convolutional neural networks [PMC11]

JPEG2000 relies on a model for natural images that is:

- Computationally cheap.
- Translation-equivariant.
- Encodes a **multi-scale** prior on natural images.

By tuning its parameters on a labeled database,

we get a **CNN** = domain-specific "JPEG2020".

The dream application: image classification [WZTF17]

Looking at CNN(x) = [μ (x) , m(x) , M(x)], can we **distinguish** seagulls from pandas?

What researchers have in mind:

The limits of multiscale filtering [NYC15]

Standard CNNs perform **pattern detection** – little more, little less:

« $\mu(\mathbf{x})$ is reliable ; $\mathbf{M}(\mathbf{x})$ really isn't. »

Overview of the class

Domain-specific observations on a population of N subjects

MRI/CT images

Cognitive scores

Blood samples

Drug consumption history

N-by-N matrix of similarities

General machine learning methods

Clustering (K-Means...)

Classification (hierarchy...)

Regression (kernels...)

Visualization (UMAP...)

This class is about understanding **similarity metrics**. What are the implicit **priors** that they reflect? How can we manipulate them **efficiently**?

Overview of the class [Wil]

Manifolds, geodesics and barycenters. Probability distributions and adversarial norms.

Algorithmic bottlenecks and solutions.

References

Man scratching head.

Wikipedia, CC BY-SA v4.0.

livier Ecabert, Jochen Peters, and Matthew Walker.

Segmentation of the heart and great vessels in ct images using a model-based adaptation framework.

Medical Image Analysis, (15):863–876, 2011.

References ii

Christian Peter Klingenberg.

Analyzing fluctuating asymmetry with geometric morphometrics: concepts, methods, and applications.

Symmetry, 7(2):843–934, 2015.

Martin Kilian, Niloy J Mitra, and Helmut Pottmann.

Geometric modeling in shape space.

In ACM Transactions on Graphics (TOG), volume 26, page 64. ACM, 2007.

References iii

Lasunncty.

Diagram illustrating and explaining various terms in relation to orbits of celestial bodies.

Wikipedia, CC BY-SA v3.0.

📔 Stéphane Mallat.

Understanding deep convolutional networks.

Phil. Trans. R. Soc. A, 374(2065):20150203, 2016.

🔋 Tomaso Mansi.

A statistical model for quantification and prediction of cardiac remodelling: Application to tetralogy of fallot.

IEEE transactions on medical imaging, 2011.

Yaroslav Nikulin and Roman Novak.

Exploring the neural algorithm of artistic style.

arXiv preprint arXiv:1602.07188, 2016.
References v

Anh Nguyen, Jason Yosinski, and Jeff Clune.

Deep neural networks are easily fooled: High confidence predictions for unrecognizable images.

In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 427–436, 2015.

Maurice Peemen, Bart Mesman, and Henk Corporaal.

Speed sign detection and recognition by convolutional neural networks.

In Proceedings of the 8th International Automotive Congress, pages 162–170, 2011.

References vi

Earth maps.

Wikipedia, CC BY-SA v3.0.

Philipp von Radziewsky, Elmar Eisemann, Hans-Peter Seidel, and Klaus Hildebrandt.
Optimized subspaces for deformation-based modeling and shape interpolation.

Computers & Graphics, 58:128–138, 2016.

📔 John Williamson.

What do numbers look like?

https://johnhw.github.io/umap_primes/index.md.html.

Donglai Wei, Bolei Zhou, Antonio Torralba, and William T Freeman.

mNeuron: A Matlab plugin to visualize neurons from deep models.

Massachusetts Institute of Technology, 2017.