Geometric data analysis
Lecture 6/7 – Probability distributions

Jean Feydy
HeKA team, Inria Paris, Inserm, Université Paris-Cité

Thursday, 9am–12pm – 7 lectures
Faculté de médecine, Hôpital Cochin, rooms 2001 + 2005
Validation: project + quizz
Recap of the previous lectures

To mitigate the **curse of dimensionality**, we use:

- **Expert** knowledge: high-quality features.
- Relevant **families** of functions: kernels, convolutional networks.
- Relevant **neighborhood** structures: graphs.

Main challenge: local implementation \Rightarrow global understanding.

Produce **guidelines** and **insights** for practitioners.
Lecture 5 – From discrete graphs to **continuous spaces**:
- The Poincaré disk.
- Local metrics and geodesics.

Lecture 6 – From discrete samples to **continuous distributions**:
- **Why do we care** about probability distributions?
- Information **geometry**, kernels and optimal transport.
- **Lab session** on gradient descent.

⟹ Chapter 3 of my PhD thesis, *Geometric data analysis, beyond convolutions*.
What is a probability distribution?
Probability distribution \(\alpha = \text{weights } a_i \text{ at locations } x_i \)

Histogram:
- **variable** weights \(a_i \),
- **fixed** locations \(x_i \).

Sample:
- **fixed** weights \(1/N \),
- **variable** locations \(x_i \).

Weighted point cloud:
- **variable** weights \(a_i \),
- **variable** locations \(x_i \).

Discrete sum \(\alpha = \sum_{i=1}^{N} a_i \delta_{x_i} \implies \) Continuous density \(\alpha = \int_x a(x) \, dx \).

Today, we assume that \(a \geq 0 \) and sums up to 1.
We must handle both **discrete** and **continuous** distributions.

We must choose if α is closer to β (same mean value) or to γ (same support).
One-sample test:
- discrete observation α,
- continuous model β.

Two-sample test:
- two discrete observations α and β.

Null hypothesis: α and β come from the same distribution.

Test: reject if $d(\alpha, \beta)$ is too large.
Example: Splitting a population evenly for a clinical trial

Problem 1: ensure that the treatment and control groups have similar characteristics.

Problem 2: given a large population, pick a group of control patients that have similar characteristics to our treated patients.
Application 2: Classification = regression in a space of distributions

Linear regression:
- Encode class labels as **integer numbers**
 \[l(x) \in \{1, 2, 3\} . \]
- Predict a **score** \(s(x) \) at every location \(x \).
- Minimize the **least square error**:
 \[
 \frac{1}{N} \sum_{i=1}^{N} |l(x) - s(x)|^2.
 \]

Massive **bias** depending on the **ordering** of the labels.

2 input features, 3 classes.
Logistic regression:

- Encode class labels as **probability distributions** \(\delta(x) \in \mathbb{P}\{1, 2, 3\} \).
- Predict a vector of **scores** \(s_i(x) \) at every location \(x \) and turn it into a probability distribution using the **SoftMax**:
 \[
 \alpha(x) = \left(e^{s_1(x)}, e^{s_2(x)}, e^{s_3(x)} \right) / \sum e^{s_i(x)}
 \]
- Minimize the **relative entropy**:
 \[
 \frac{1}{N} \sum_{i=1}^{N} KL(\delta(x), \alpha(x)) .
 \]

Invariant to the **ordering** of the labels.
Generative Adversarial Networks and Variational Auto-Encoders minimize a distance between a synthetic sample and a reference data sample.

Diffusion and score-based models estimate a gradient of the distance to the support of a reference data sample.
Application 4: Shape registration [KCC17]

Curve: one weight per **segment**.

Surface: one weight per **triangle**.

Segmentation mask: one weight per **voxel**.

Encoding shapes as distributions guarantees an **invariance to resamplings**.

We may work with **basic** \((x, y, z)\) coordinates or with **better features**.
Registration algorithms **minimize a distance** between a deformable model α and the fixed target β.

0. Input data
1. Pre-alignment
2. Deep registration
3. Fine-tuning
Application 5: Meta-analyses on histograms and distributions

3D shape **texture**

\[\sim \text{Distribution of } \textbf{curvatures} \]

\[\kappa_1 \geq \kappa_2 \text{ on the surface.} \]

UMAP representation of a population of textures, from the matrix of Wasserstein **distances between curvature histograms**.

Distances enable the processing of **populations of histograms**.

This is relevant to make **group-level** analyses.
A point about implementations

Histogram:
- **explicit** weights a_i,
- **implicit** locations x_i.

Sample:
- **implicit** weights $1/N$,
- **explicit** locations x_i.

Weighted point cloud:
- **explicit** weights a_i,
- **explicit** locations x_i.

Depending on the application, we may choose a **different encoding** for our distributions.
A point about implementations

Histogram:
- **explicit** weights a_i,
- **implicit** locations x_i.

Sample:
- **implicit** weights $1/N$,
- **explicit** locations x_i.

Weighted point cloud:
- **explicit** weights a_i,
- **explicit** locations x_i.

Understanding that **different implementations** correspond to **the same operation** is key to insightful research in the field.
A point about implementations

Convolution of the **density map** $a[i, j]$ with a filter $g[i, j]$.

Additive noise:

$$x_i \mapsto x_i + w_i$$
where $w_i \sim \mathcal{N}(0, \sigma^2)$.

Soft distance:

$$\log\text{-likelihood } \ell(x) = \log \left(\sum_i a_i e^{-\|x-x_i\|^2/2\sigma^2} \right).$$

Understanding that **different implementations** correspond to **the same operation** is key to insightful research in the field.
A point about notations

If \(\alpha = \sum_{i=1}^{N} a_i \delta_{x_i} \) is a probability distribution and \(f : x \mapsto f(x) \in \mathbb{R} \) is a continuous function,

\[
\sum_{i=1}^{N} a_i f(x_i) = \int f(x) \, d\alpha(x) = \langle \alpha , f \rangle = \mathbb{E}_{X \sim \alpha} [f(X)].
\]

To study spaces of probability distributions, the \(\langle \alpha , f \rangle \) notation is superior as it highlights the linearity with respect to both distributions and functions:

\[
\langle \frac{1}{2} \alpha + \frac{1}{2} \beta , f \rangle = \frac{1}{2} \langle \alpha , f \rangle + \frac{1}{2} \langle \beta , f \rangle ,
\]

\[
\langle \alpha , f + g \rangle = \langle \alpha , f \rangle + \langle \alpha , g \rangle .
\]
Major distances between distributions
When designing a distance between histograms:

- Should we leverage the distance $\|x - y\|$ on the “ground space” of labels?
- How harshly should we penalize errors on the estimation of the support?
The total variation distance

The space of probability distributions on

\[\{x_1, \ldots, x_K\} \]

is a **simplex** of dimension \(K - 1 \).

The Total Variation is the L1–Manhattan distance:

\[
TV(\alpha, \beta) = \sum_i |a(x_i) - b(x_i)|.
\]

This distance:

- **Maxes out** at 2 with **disjoint** supports.
- Pays no attention to \(\|x_i - x_j\| \).
- Pays no attention to **unlikely events**.
If $\beta = (b(1), \ldots, b(K))$ is a model distribution on $\{1, \ldots, K\}$, the likelihood of observing a sample x is $L_\beta(x) = b(x)$.

Assuming independence, the joint likelihood of a sample (x_1, \ldots, x_N) is:

$$L_\beta(x_1, \ldots, x_N) = b(x_1) \cdots b(x_N).$$

Finding a sample (x_1, \ldots, x_N) that maximizes the likelihood is equivalent to minimizing:

$$\ell_\beta(x_1, \ldots, x_N) = - \frac{1}{N} \log [L_\beta(x_1, \ldots, x_N)] = \frac{1}{N} \sum_{i=1}^{N} \log \left[\frac{1}{b(x_i)} \right]$$

If the x_i are drawn independently according to a data distribution α, this converges to:

$$\ell_\beta(\alpha) = \lim_{N \to +\infty} \sum_{k=1}^{K} \frac{\# \{i \mid x_i = k\} \log [1/b(k)]}{N} = \sum_{k=1}^{K} a(k) \log [1/b(k)]$$
In practice, the data distribution \(\alpha \) is fixed and we try to find a model distribution \(\beta \) which is as likely as possible.

This is equivalent to minimizing the relative entropy or Kullback–Leibler divergence:

\[
\text{KL}(\alpha, \beta) = \ell_\beta(\alpha) - \ell_\alpha(\alpha) = \sum_{k=1}^{K} a(k) \log \left[\frac{a(k)}{b(k)} \right].
\]

We have that \(\text{KL}(\alpha, \alpha) = 0 \) and \(\text{KL}(\alpha, \beta) \geq 0 \), since \(\log \) is concave:

\[
\log \left[\frac{b(k)}{a(k)} \right] \leq \frac{b(k)}{a(k)} - 1
\]

\[
\implies \quad \log \left[\frac{a(k)}{b(k)} \right] \geq 1 - \frac{b(k)}{a(k)}
\]

\[
\implies \quad \sum_{k=1}^{K} a(k) \log \left[\frac{a(k)}{b(k)} \right] \geq \sum_{k=1}^{K} a(k) \left[1 - \frac{b(k)}{a(k)} \right] = 0.
\]
First properties of the relative entropy

\[\text{KL}(\alpha, \beta) = \sum_{k=1}^{K} a(k) \log \left(\frac{a(k)}{b(k)} \right) = \int x a(x) \log \left(\frac{a(x)}{b(x)} \right) \, dx : \]

- Is **not symmetric** – remember it as \(\text{KL}(\text{data} \mid \text{model}) \).
- Is tied to an assumption of **independence**.
- Historically: compression on communication networks \(\implies \) .zip format.

Crucially, the relative entropy:

- Pays no attention to \(\|x_i - x_j\| \).
- Pays **a lot** of attention to **unlikely events**: \(\log(0^+) = -\infty \).
The Gauss map defines a **parametric surface**:

\[
\mathcal{N} : (m, \sigma) \in \mathbb{R} \times \mathbb{R}_+ \mapsto \mathcal{N}(m, \sigma) \in \mathbb{P}(\mathbb{R}) .
\]

Direct computations show that:

\[
\text{KL}(\mathcal{N}(m + dm, \sigma + d\sigma), \mathcal{N}(m, \sigma)) = \frac{1}{2} dm^2 + d\sigma^2 + o(dm^2, d\sigma^2)
\]

\[
\Rightarrow \quad \text{Poincaré metric on the upper half-plane.}
\]

With its **invariance to translation and scalings**, the relative entropy induces a **hyperbolic** geometry on the surface of Gaussian distributions.
Kernel norms: recover compatibility with the addition

For sources \(\alpha = \sum_i a_i \delta_{x_i} \) and targets \(\beta = \sum_j b_j \delta_{y_j} \), choose a symmetric function \(g \) that induces a convolution kernel \(k = g \ast g \) and use:

\[
d_k(\alpha, \beta) = \| g \ast \alpha - g \ast \beta \|^2_{L^2}
\]

\[
= \langle \alpha - \beta, k \ast (\alpha - \beta) \rangle
\]

\[
= \sum_i \sum_j a_i a_j k(x_i, x_j)
- 2 \sum_i \sum_j a_i b_j k(x_i, y_j)
+ \sum_i \sum_j b_i b_j k(y_i, y_j).
\]
Kernel norms: recover compatibility with the addition

Kernel norms (aka. Hilbert or Sobolev norms, Maximum Mean Discrepancies):

- Are **quadratic** with respect to the weights a_i and b_j.
- Are compatible with the addition – the geodesic from α to β is:

 $$t \in [0, 1] \mapsto (1 - t) \alpha + t \beta.$$

- Have **wildly different behaviors** depending on $k(x, y)$: see the lab session.

Crucially, these formulas:

- Pay **a lot** of attention to $\|x_i - y_j\|$.
- Pay little attention to **unlikely events**, except if they are associated to **large values of** $k(x, y)$.
Optimal transport (OT) generalizes sorting to spaces of dimension $D > 1$

If $A = (x_1, \ldots, x_N)$ and $B = (y_1, \ldots, y_N)$ are two clouds of N points in \mathbb{R}^D, we define:

$$\text{OT}(A, B) = \min_{\sigma \in \mathcal{S}_N} \frac{1}{2N} \sum_{i=1}^{N} \| x_i - y_{\sigma(i)} \|^2$$

Generalizes sorting to metric spaces.

Linear problem on the permutation matrix P:

$$\text{OT}(\alpha, \beta) = \min_{P \in \mathbb{R}^{N \times N}} \sum_{i,j=1}^{N} P_{i,j} \cdot \frac{1}{2} \| x_i - y_j \|^2,$$

s.t. $P_{i,j} \geq 0$, $\sum_j P_{i,j} = a_i$, $\sum_i P_{i,j} = b_j$.

Each source point is transported onto the target.

$\sigma : [1, 5] \rightarrow [1, 5]$
Practical use

Alternatively, we understand OT as:

- Nearest neighbor projection + incompressibility constraint.
- Fundamental example of linear optimization over the transport plan $P_{i,j}$.

This theory induces two main quantities:

- The transport plan $P_{i,j} \simeq$ the optimal mapping $x_i \mapsto y_{\sigma(i)}$.
- The “Wasserstein” distance $\sqrt{\text{OT}(A, B)}$.
The optimal transport plan

Before

After
The optimal transport plan

Before

After
The optimal transport plan

Before

After
The optimal transport plan
The Wasserstein metric on statistical manifolds [PC18]

The Gauss map defines a **parametric surface**:

\[\mathcal{N} : (m, \sigma) \in \mathbb{R} \times \mathbb{R}_+ \mapsto \mathcal{N}(m, \sigma) \in \mathbb{P}(\mathbb{R}) . \]

Direct computations show that:

\[
2 \text{OT}(\mathcal{N}(m_1, \sigma_1), \mathcal{N}(m_2, \sigma_2)) = (m_1 - m_2)^2 + (\sigma_1 - \sigma_2)^2.
\]

\[\implies \text{Euclidean metric on the upper half-plane.} \]

Optimal transport **lifts the geometry of the sample space** to the surface of Gaussian distributions.
Two canonical distances between Gaussian distributions [PC18]

Gaussians + **Wasserstein** metric
= **Euclidean**.

Gaussians + relative **entropy**
= **Poincaré**.
Geometric solutions to least square problems [AC11]

Barycenter $A^* = \arg\min_A \sum_{i=1}^{4} \lambda_i \text{Loss}(A, B_i)$.

Euclidean barycenters.
$\text{Loss}(A, B) = \|A - B\|_{L^2}^2$

Wasserstein barycenters.
$\text{Loss}(A, B) = \text{OT}(A, B)$
How should we solve the OT problem?

Key dates for discrete optimal transport with N points:

- [Kan42]: **Dual** problem of Kantorovitch.
- [Kuh55]: **Hungarian** methods in $O(N^3)$.
- [Ber79]: **Auction** algorithm in $O(N^2)$.
- [KY94]: **SoftAssign** = Sinkhorn + simulated annealing, in $O(N^2)$.
- [GRL+98, CR00]: **Robust Point Matching** = Sinkhorn as a loss.
- [Cut13]: Start of the **GPU era**.
- [Mér11, Lév15, Sch19]: **multi-scale** solvers in $O(N \log N)$.

- **Solution**, today: **Multiscale Sinkhorn algorithm, on the GPU.**

 \implies Generalized **QuickSort** algorithm,
 $\approx O(N \log N)$ if D is small, fast $O(N^2)$ otherwise.
Scaling up optimal transport to anatomical data

Progresses of the last decade add up to a $\times 100 - \times 1000$ acceleration:

Sinkhorn GPU $\times 10 \rightarrow$ + KeOps $\times 10 \rightarrow$ + Annealing $\times 10 \rightarrow$ + Multi-scale

With a precision of 1%, on a gaming GPU:

```
pip install geomloss
+ modern GPU (1 000 €)
```

10k points in 30-50ms

100k points in 100-200ms
Recap on classical distances between probability distributions

The **Total Variation**:
- **Invariant** to the ground metric \(\| x_i - y_j \| \), only cares about **large** weights \(a_i \) and \(b_j \).

The **relative entropy** KL:
- **Invariant** to the ground metric \(\| x_i - y_j \| \), cares about the **ratio** \(a_i / b_j \).

Kernel norms:
- More or less **faithful** to the ground metric **depending** on \(k \), easy to scale on GPUs.

Optimal transport distances:
- **Extremely faithful** to the ground metric \(\| x_i - y_j \| \).
- **Scalability** is recent – still open on general graphs and manifolds.
Open problem 1: Topology-aware distances

“OT that preserves the neighborhood structure”?

The problem has been studied for decades:

- **Optimization**: Quadratic assignment…
- **Optimal Transport**: Gromov–Wasserstein…
- **Fluid mechanics**: Camassa–Holm equation…
- **Shape analysis**: LDDMM, SVF…
- **Statistics**: Stein Variational Gradient Descent…
- **Deep learning**: Neural ODEs…

Mature tools exist but remain ≥ 100 slower than Optimal Transport.
Open problem 2: The curse of dimensionality

In **high dimension**, the matrix of Euclidean distances stops being informative.

Standard kernels and OT metrics are overwhelmed by **statistical noise**.

How can we compute **meaningful distances and gradients**?

GANs and VAEs **minimize a distance** between a **synthetic sample** and a **reference data sample**.
Dual norms: a fundamental insight from functional analysis

\[
\text{Loss}(\alpha, \beta) = \max_{f \in B} \langle \alpha - \beta, f \rangle,
\]

look for \(\theta^* = \arg \min_{\theta} \max_{f \in B} \langle \alpha(\theta) - \beta, f \rangle\)

- \(B = \{ \| f \|_\infty \leq 1 \} \implies \text{Loss} = \text{TV norm}:\)
 - Zero geometry, always saturates on disjoint samples.
 - **Too many** test functions.
- \(B = \{ \| f \|_{L^2}^2 + \| \nabla f \|_{L^2}^2 + \cdots \leq 1 \} \implies \text{Loss} = \text{kernel norm}:\)
 - Screening artifacts – see lab session.
 - In high dimension, samples are at equal distance from each other.

 \textbf{“Smooth”} functions are either “constant” or “bounded”: fall back on TV behavior.
Dual norms: link with the GANs literature

\[
\text{Loss}(\alpha, \beta) = \max_{f \in B} \langle \alpha - \beta, f \rangle,
\]

look for \(\theta^* = \arg\min_{\theta} \max_{f \in B} \langle \alpha(\theta) - \beta, f \rangle \)

- \(B = \{ f \text{ is 1-Lipschitz} \} \implies \text{Loss} = \text{Wasserstein-1}: \)
 - Modern solvers are nearly as efficient as a **closed formula**.
 - **Useless** in \((\mathbb{R}^{512 \times 512}, \| \cdot \|_2)\): the ground cost makes no sense.
- \(B \approx \{ f \text{ is 1-Lipschitz} \} \cap \{ f \text{ is a CNN} \} \implies \text{Loss} = \text{Wasserstein–GAN} : \)
 - Use **perceptual** test functions.
 - No simple formula: use **gradient ascent**.
 Leads to a cumbersome min-max optimization.
Open problem 2: Understand the impact of domain-specific test functions f

Similar story for **diffusion models**: we use **CNNs** (U-Nets...) to predict the gradient of the distance to the set of **natural images**.

The **interplay** between **mathematical insights** derived from toy models and **numerical experiments** on modern hardware is at the **heart of ML research**.

Let’s play with gradient descent to **build an intuition** about classical formulas!

Diffusion and score-based models estimate a gradient of the **distance to the support** of a **reference data sample**.
References
M. Agueh and G. Carlier.

Barycenters in the Wasserstein space.

Dimitri P Bertsekas.

A distributed algorithm for the assignment problem.

Haili Chui and Anand Rangarajan.

A new algorithm for non-rigid point matching.

Marco Cuturi.

Sinkhorn distances: Lightspeed computation of optimal transport.

Jean Feydy.

Data science workshop notes.

Session 12.

Jean Feydy.

Geometric data analysis, beyond convolutions.

Steven Gold, Anand Rangarajan, Chien-Ping Lu, Suguna Pappu, and Eric Mjolsness.

New algorithms for 2d and 3d point matching: Pose estimation and correspondence.

Leonid V Kantorovich.

On the translocation of masses.

Irene Kaltenmark, Benjamin Charlier, and Nicolas Charon.

A general framework for curve and surface comparison and registration with oriented varifolds.

Harold W Kuhn.

The Hungarian method for the assignment problem.

Jeffrey J Kosowsky and Alan L Yuille.

The invisible hand algorithm: Solving the assignment problem with statistical physics.

Bruno Lévy.

A numerical algorithm for l2 semi-discrete optimal transport in 3d.

Quentin Mérigot.

A multiscale approach to optimal transport.

Gabriel Peyré and Marco Cuturi.

Computational optimal transport.

A. Savin.

Lion at the berlin zoo.

Art Libre.

Bernhard Schmitzer.

Stabilized sparse scaling algorithms for entropy regularized transport problems.

Zhengyang Shen, Jean Feydy, Peirong Liu, Ariel H Curiale, Ruben San Jose Estepar, Raul San Jose Estepar, and Marc Niethammer.

Accurate point cloud registration with robust optimal transport.