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Abstract

Geometric methods rely on tensors that can be encoded using a symbolic formula
and data arrays, such as kernel and distance matrices. We present an extension for
standard machine learning frameworks that provides comprehensive support for
this abstraction on CPUs and GPUs: our toolbox combines a versatile, transparent
user interface with fast runtimes and low memory usage. Unlike general purpose
acceleration frameworks such as XLA, our library turns generic Python code
into binaries whose performances are competitive with state-of-the-art geometric
libraries – such as FAISS for nearest neighbor search – with the added benefit
of flexibility. We perform an extensive evaluation on a broad class of problems:
Gaussian modelling, K-nearest neighbors search, geometric deep learning, non-
Euclidean embeddings and optimal transport theory. In practice, for geometric
problems that involve 103 to 106 samples in dimension 1 to 100, our library speeds
up baseline GPU implementations by up to two orders of magnitude.

1 Introduction

Fast numerical methods are the fuel of machine learning research. Over the last decade, the sustained
development of the CUDA ecosystem has driven the progress in the field: though Python is the lingua
franca of data science and machine learning, most frameworks rely on efficient C++ backends to
leverage the computing power of GPUs [1, 86, 101]. Recent advances in computer vision or natural
language processing attest to the fitness of modern libraries: they stem from the mix of power and
flexibility that is provided by PyTorch, TensorFlow and general purpose accelerators such as XLA.

Nevertheless, important work remains to be done. Geometric computations present a clear gap
in performances between Python and C++: notable examples are implementations of point cloud
convolutions or of the nearest neighbor search [65, 76]. To scale up geometric computations to
real-world data, a common practice is therefore to replace the compute-intensive parts of a Python
code by handcrafted CUDA kernels [35, 60, 92]. These are expensive to develop and maintain, which
leads to an unfortunate need to compromise between ease of development and scalability.

To address this issue, we present KeOps: an extension for PyTorch, NumPy, Matlab and R that
combines the speed of a handcrafted CUDA kernel with the simplicity of a high level language.
Our toolbox optimizes map-reduce operations on generalized point clouds and provides transparent
support for distance-like matrices, as illustrated in Figure 1. The resulting computations are fully
differentiable and have a negligible memory footprint. Their runtimes are competitive with state-
of-the-art CUDA libraries when they exist, and peerless in the many use cases that are not covered
by existing implementations. Our library fits seamlessly within existing codebases and provides
a sizeable performance boost to a wide range of methods. Among other applications, we present
optimal transport solvers and geometric operators in hyperbolic spaces which are orders of magnitude
faster than the state-of-the-art. We believe that our library is an important addition to the existing
arsenal of tools and will have a stimulating impact on machine learning research.
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(a) Dense matrix

(in, jn,Mn)

(b) Sparse matrix

F (xi , yj )

(c) Symbolic matrix

Figure 1: Machine learning frameworks understand variables as matrices, also known as tensors.
(a) These are usually dense and encoded as explicit numerical arrays (Mi,j) = (M [i, j]) ∈ RN×M

that can have a large memory footprint. (b) Alternatively, some operators can be encoded as sparse
matrices: we store in memory the indices (in, jn) and values Mn = Min,jn that correspond to a
small number of non-zero coefficients. Reduction operations are then implemented using indexing
methods and scattered memory accesses. (c) We provide support for a third class of tensors: symbolic
matrices whose coefficients are given by a formula Mi,j = F (xi, yj) that is evaluated on data arrays
(xi) and (yj). Reduction operations are implemented using parallel schemes that compute the
coefficients Mi,j on-the-fly. We take advantage of the structure of CUDA registers to bypass costly
memory transfers and achieve optimal runtimes on a wide range of applications.

2 Related work

Machine learning and data science applications often encounter the problem of computing the
proximity or distance between data samples. Given x1, . . . , xN and y1, . . . , yM ∈ RD two clouds of
N and M points in dimension D, the bottleneck of many methods is an interaction step of the form:

ai ←
M

�
j=1

F (i, j, xi, yj) , ∀i ∈ [[1,N]] , (1)

where F is a vector-valued formula and � is an associative reduction operator, e.g. a sum or a
minimum. This paper is part of a large body of work that lowers the O(NM) computational cost of
such an operation: we now recall the main approaches to this problem.

Sparse matrices. A first strategy is to prune out negligible terms: for every index i, we perform the
reduction (1) on a subset of neighbors N (i) ⊂ [[1,M]]. As illustrated in Figure 1, this method is akin
to using sparse matrices: the neighborhood structure is usually understood as a connectivity matrix
that comes from a triangle mesh or a K-nearest neighbors (KNN) graph [16, 69, 114]. This method
can be used whenever the operation F is local but has a major limitation: at a low level, truncated
reductions rely on random memory accesses that do not stream well on GPUs [25, 82]. Consequently,
speed-ups are only achieved if the neighborhoods N (i) are orders of magnitude smaller than the full
set of indices [[1,M]] – a condition that is often too restrictive and cannot be satisfied.

Nearest neighbor finders. Going further, the implementation of KNN queries is itself a geometric
problem in the mould of (1). When the datasets (xi) and (yj) have a small intrinsic dimension,
efficient schemes can outperform brute-force approaches [11, 31, 49, 53, 65, 77, 85]. Unfortunately,
these methods rely on pre-computations that are too expensive to be performed at every iteration of a
training loop. Reference implementations also tend to lack flexibility and only support a handful of
metrics: for instance, in spite of a strong interest for hyperbolic embeddings in the machine learning
literature [72, 83], Poincaré metrics are not supported out-of-the-box by standard libraries.

Approximated convolutions. When the reduction � is a sum and F (i, j, xi, yj) = k(xi − yj) =
Ki,j is a translation-invariant kernel, the interaction (1) is understood as a discrete convolution. To
speed up this operation, a first idea is to rely on low-rank decompositions of the kernel matrix (Ki,j)
[90, 111, 116]. Multiscale schemes can be used to handle singular kernels [7, 8, 50, 52, 115] or
compress generic operators [5, 17, 55]. Alternatively, semi-Eulerian methods rely on intermediate
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grid representations to leverage fast Fourier transforms or convolution routines [32, 51, 76]. These
approaches can achieve dramatic speed-ups but tend to require a significant amount of tuning for
each kernel k. They work best when the latter is smooth or is defined on a space of dimension D 6 3.

Acceleration frameworks. In contrast to mathematical approaches, several compilation frame-
works have been designed to speed-up machine learning architectures. Modern toolboxes accelerate
a wide range of operations but are not geared towards geometric problems: most of them keep a
focus on distributed learning [63, 64, 97, 108] or image processing and dense tensor manipulations
[22, 58, 74, 105]. TVM [22] and CuPy [84] are the two libraries which are closer to our work: they
both provide partial support for symbolic tensors. However, they have limited support for automatic
differentiation and require the use of a custom low-level syntax to produce efficient binaries.

3 Motivation

Requirements for geometric data analysis and learning. None of the aforementioned methods
are fully suited for modern research in geometric data analysis and machine learning. Let us briefly
explain why. First of all, some acceleration schemes do not stream well on GPUs or have to rely on
expensive pre-computations: hierarchical matrices [55] or advanced nearest neighbor finders [77] can
hardly be used in the training loop of a neural network. Other strategies make strong assumptions
on the properties of the convolution filter k or on the dimension and geometry of the ambient
feature space. These restrictions make existing tools cumbersome to use in deep learning, where
one wishes to have modelling freedom, e.g. w.r.t. the choice of the embedding space geometry and
dimension. Finally, most acceleration frameworks for Python expect users to be knowledgeable on
GPU parallelism or do not support automatic differentiation. The bottomline is that most existing
tools are not ready to be used by a majority of researchers in the community.

A gap in the literature. In order to tackle these issues, the developers of deep learning libraries
have recently put an emphasis on just-in-time compilation for neural networks. For instance, the
recent PyTorch JIT and XLA engines enable operator fusion and unlock performance speed-ups for
research code [15, 86]. These general purpose compilers are fully transparent to users and show
promise for a wide range of applications. Nevertheless, they fall short on geometric computations
along the lines of (1). This is most apparent for nearest neighbor search [36, 60, 65], matrix-vector
products with kernel matrices and message passing methods on point clouds [35, 36, 102], where one
still has to develop and maintain custom CUDA kernels to achieve state-of-the-art performance.

Symbolic matrices. We notice that all the aforementioned methods rely on reductions of an N-
by-M matrix (Mi,j) = (F (i, j, xi, yj)) that is often too large to be stored in memory as a dense
tensor. Acknowledging the fact that memory management is a bottleneck for tensor programs, we
choose to focus on the fundamental concept of symbolic matrices, illustrated in Figure 1. For the
first time, we provide support for this abstraction on the GPU with all the desirable features of a
deep learning library: a math-friendly interface, high performance, transparent support for batch
processing and automatic differentiation. The example below is representative of our user interface:

1 from torch import rand, autograd # NumPy, R and Matlab are also supported
2 from pykeops.torch import LazyTensor # Symbolic wrapper for PyTorch Tensors
3

4 # Setup data on the CPU and/or GPU with shapes (N,D), (M,D), (M,E):
5 N, M, D, E = 10 ** 5, 10 ** 6, 50, 100
6 x, y, b = rand(N, D, requires_grad=True), rand(M, D), rand(M, E)
7

8 # Perform arbitrary symbolic computations:
9 x_i = LazyTensor(x.view(N, 1, D)) # (N,D) Tensor -> (N,1,D) Symbolic Tensor

10 y_j = LazyTensor(y.view(1, M, D)) # (M,D) Tensor -> (1,M,D) Symbolic Tensor
11 D_ij = ((x_i - y_j) ** 2).sum(dim=2) # (N,M) Symbolic matrix of squared distances.
12 K_ij = (- D_ij).exp() # (N,M) Symbolic Gaussian kernel matrix.
13

14 # Come back to genuine torch Tensors with reductions on dimensions 0 and 1:
15 nn = D_ij.argKmin(K=10, dim=1) # K-NN search: (N,10) array of integer indices.
16 a = K_ij @ b # Kernel matrix-vector product: (N,M) * (M,E) = (N,E)
17 [g_x] = autograd.grad((a ** 2).sum(), [x]) # Seamless backpropagation.
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(a) Simple reduction scheme on the CPU.
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(b) Tiled reduction scheme on the GPU.

Figure 2: We rely on fast parallel schemes to compute reductions of symbolic matrices, as in Eq. (1).
(a) On the CPU, each thread i computes a value ai by looping over the reduction index j and
consuming the values of F on-the-fly. (b) On the GPU, we cut (a) in K-by-K tiles (where K is the
CUDA block size) to leverage the low latency of the shared memory buffer and block-wise memory
accesses. This ensures an optimal management of the yj’s: we refer to our online documentation
(www.kernel-operations.io) and to the N-body simulation chapter of [82] for details.

4 Implementation

Creating a symbolic tensor. The entry point to our library is a LazyTensor wrapper that turns
dense arrays into symbolic matrices (lines 9-10). We use standard operations to build up arbitrary
formulas F : lines 11-12 update a symbolic representation of the matrices D_ij and K_ij. Our
math engine is lazy, and defers the evaluation of formulae until reduction time. It is also versatile:
we support batch dimensions, operator broadcasting and a wide range of elementary operations.
Formulae can use an arbitrary number of variables x1i , x2i , . . . and y1j , y2j , . . . with varied dimensions.

Parallel reduction schemes. Numerical computations take place at the reduction time (lines 15-
16), when an associative operator � is called to perform an interaction step (1). To this end, we use a
tiled map-reduce scheme that is detailed in Figure 2. Our C++ engine optimizes the use of registers
to avoid costly memory transfers: the algorithm has O(NM) time complexity but does not allocate
any buffer in the global device memory. For the sake of performance, we compile a specific binary
for every new formula-reduction pair (F,�). These are stored in a cache directory for later use: the
compilation is only done once. Unlike most acceleration frameworks, we do not expect the sizes
of the data arrays (xi) ∈ RN×D and (yj) ∈ RM×D to be fully known at compile time: our binaries
only rely on the feature dimensions D. This allows us to work with datasets of varying sizes, without
having to re-compile binaries or sub-sample point clouds to an arbitrary point count. Notably, this
allows our engine to process raw shape data on-the-fly.

Pruning negligible interactions. Our library provides support for alternative reduction strategies
that improve numerical accuracy [67] or increase GPU usage when N < M. Going further, our
symbolic tensors support the specification of block-wise sparsity masks as optional attributes. Block
reduction tiles are encoded using a collection of (istart, iend, jstart, jend) tuples of indices that allow our
engine to focus on a subset of the full collection of interaction pairs [[1,N]]× [[1,M]]. They can be
used to prune out negligible terms from symbolic reductions, without giving up on the contiguous
memory accesses that make or break the performance of CUDA kernels.

Among high-level computing frameworks, this feature is unique to our library. Block-diagonal
sparsity masks allow us to provide seamless support for batch processing, even in heterogeneous
situations that are of interest for point cloud and mesh processing. Assuming that the data arrays have
been pre-sorted in contiguous clusters, block-sparsity masks also enable the GPU implementation of
fast multiscale methods such as the Barnes-Hut algorithm [7].
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Strengths and limitations. At its heart, KeOps leverages the low Kolmogorov complexity of
symbolic arrays: it can be used when the computational bottleneck of a method is an interaction step
of the form (1). As we show next in the benchmarks of Section 5, KeOps is likely to offer gains on
runtime and memory usage when the numbers of samples N and M range from 103 to 107.

The main limitation of KeOps stems from the overflow of CUDA registers in the reduction of
Figure 2: these result in decreased performances on large feature vectors with D > 100. The problem
is known as register spilling, with some documented work-arounds [25, 82]. Our priority for future
developments is to improve performance for problems with D ∼ 1k.

Another drawback is that we do not pre-ship binaries but instead rely on C++/CUDA compilers to run
our kernels. To mitigate deployment issues and ease maintenance in the long run, we implement the
core of the library in C++ and keep dependencies to a minimum [61]. In practice, compilation times
range from 10 to 25 seconds when D 6 1,000 and can be prohibitive for D > 2,000. Our library runs
out-of-the-box on Linux or Mac configurations that provide a CUDA environment, e.g. fresh Google
Colab sessions.

5 Experiments and Applications

Configuration. We now showcase our toolbox on a wide range of machine learning problems.
All benchmarks were performed on a workstation equipped with 8 Intel Xeon Gold 6142 CPU @
2.60GHz cores (16 threads), 128Gb of RAM and a Nvidia RTX 2080 Ti GPU with 11Gb of device
memory. When relevant, we include comparisons with PyTorch JIT and JAX/XLA: just like our
library, these two frameworks offer a transparent user interface and high performance on GPU. At the
Python level, the implementations tested are rigorously equivalent to each other: we implement the
same computations and only have to account for minor syntactic divergences. Whenever possible, we
work with batches of samples and shapes to improve GPU usage.

Notations, datasets. In tables, “mem” stands for an out-of-memory error, “∞” for a time that was
too high to be recorded and “—” denotes a lack of available implementation. L1 and L2 denote
the Manhattan and Euclidean metrics, respectively, 〈 , 〉 denotes the cosine similarity and HD is the
Poincaré metric on a hyperbolic space of dimension D [18, 21]. We perform numerical experiments
with random normal samples and freely available datasets: digits from Scikit-Learn [87], Stanford
dragon [26], ShapeNet [19]. MNIST [73], SIFT [62], GloVe-25 and GloVe-100 [88] were taken from
the ANN-benchmarks repository [4], while HyperE-10 and HyperE-50 are hyperbolic embeddings
processed from WordNet datasets [95].

5.1 Kernel Methods and Clustering

Kernel methods. Accelerating kernel methods is one of the core strengths of KeOps [20]. The code
snippet of Section 3 shows how to perform a Gaussian convolution on point clouds and can be adapted
to any other standard kernel. As detailed in the Supplementary Materials, symbolic LazyTensors
can be transparently interfaced with the standard iterative solvers of the scipy.sparse.linalg
library [66, 104]. This allows us to solve large-scale Gaussian regression problems (N > 100k-1M)
in seconds on a single GPU [57, 78]. Going forward, KeOps provides solid numerical foundations
for recent methods in the field that rely on kernel matrices [45, 80].

Clustering. As detailed in the Supplementary Materials, KeOps can be used to implement K-means
clustering with several metrics. Going further, we use our symbolic LazyTensors to implement
the standard Expectation Maximisation (EM) algorithm on a Gaussian Mixture Model (GMM) [56]:
we estimate the weight, mean and covariance matrix of each of the K components. To this end, the
EM algorithm strives to maximize the likelihood that is computed from a data sample of N points in
RD. The most costly computations involve sum reductions of a K-by-N LazyTensor that encodes
interactions between the K means of the clusters and the N sample points. Our results are summarized
in Table 1. We show that KeOps performs well when computations involve variables of modest size:
it can scale to large datasets in seconds, without memory overflows. This is most apparent when
covariance matrices are diagonal and encoded as vectors of size D. In the second half of the table, we
handle full D-by-D covariance matrices and notice a slow-down when D > 10.
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5.2 Nearest neighbor search with any metric

Syntax for a K-nearest neighbors query. Our library enables the efficient implementation of brute-
force KNN finders for any metric that is known in closed form. Users can apply the argKmin(K=...)
reduction to extract the indices for the K-smallest values along the lines of any symbolic tensor:

1 # Turn (N,D) and (M,D) dense arrays into symbolic tensors:
2 x_i, y_j = LazyTensor(x.view(N,1,D)), LazyTensor(y.view(1,M,D)) # (N,1,D), (1,M,D)
3

4 # Compute the (N,M) symbolic matrix of distances:
5 E_ij = ((x_i - y_j) ** 2).sum(dim=2) # Squared Euclidean metric
6 M_ij = (x_i - y_j).abs().sum(dim=2) # Manhattan distance
7 C_ij = 1 - (x_i | y_j) # Cosine similarity
8 H_ij = E_ij / (x_i[...,0] * y_j[...,0]) # Hyperbolic metric on the half-space
9

10 # Perform a K-NN search - in this case, for the hyperbolic metric:
11 indices = H_ij.argKmin(K=10, dim=1) # Dense (N,K) array of integer indices

In the example above, the hyperbolic metric is defined on the half-space model of dimension D, with a
positive first coordinate x[0] > 0 for feature vectors x ∈ RD [18]. The mapping x 7→ arcosh(1+x/2)
is increasing, which allows us to work with the pseudo-distanceH(xi, yj) = ‖xi−yj‖2/(xi[0]yj [0]):
similar acceleration tricks can be applied to e.g. the Poincaré ball metric.

Exact and approximate nearest neighbor search. The complexity of a KNN query depends on
the number of points N and features D that are available for a given dataset: in the literature, two types
of strategies have been designed to handle different scenarios. On the one hand, exact bruteforce
schemes compute all pairwise distances between query and data points. These methods stream well
on GPUs, have little to no parameters to tune and require no pre-processing of the data. On the other
hand, approximate schemes leverage the structure of the dataset to prune out useless computations
whenever possible. These methods are usually implemented on CPUs and tend to rely on hierarchical
decompositions of the dataset that must be pre-computed ahead of the first KNN query. As discussed
in Sections 2 and 3, approximate methods are tailored for large-scale retrieval whereas bruteforce
schemes are generally more suited to geometric scenarios.

Benchmarks. To illustrate this behaviour, we compare our bruteforce reduction scheme to a
selection of common baselines: bruteforce PyTorch and JAX implementations on the GPU; the
popular FAISS library [65], with an approximate HNSW algorithm on the CPU [77] and two
dedicated CUDA implementation on the GPU: an exact bruteforce scheme and the approximate
IVF-Flat method. To showcase the variety of settings in which KNN queries are used throughout the
literature, we run these methods on a collection of random normal samples and structured datasets.
We use N = 104 to 107 points with D = 3 to 784 features: these lower and upper bounds let
us represent the range of problems that are encountered in geometric data analysis, from shape
processing to the manipulation of word embeddings. We stress that for larger datasets, approximate
methods would clearly outperform our bruteforce approach.

Results are displayed in Table 2. A first observation is that on these medium-sized problems, our
bruteforce GPU implementation is faster than approximate CPU methods to build a full KNN graph:
even when FAISS-HNSW outperforms KeOps in terms of queries per second, this comes at the
cost of a significant pre-processing time. A second remark is that our generic reduction engine for
bruteforce computations is on par with the hand-crafted CUDA routines of the FAISS library: KeOps
is less efficient than the FAISS-Bruteforce routine when D > 50 but is up to ×3 faster in smaller
dimensions. Crucially, we also provide the only competitive routines for non-Euclidean geometries,
such as the increasingly popular hyperbolic metrics [83].

Conclusion. Overall, the performances of our C++ engine hold up to scrutiny: KeOps provides
respectable runtimes on small and medium-sized problems (up to N = 106 and D = 100) with the
added benefit of flexibility. These results attest to the effectiveness of our optimization techniques
and bode well for the other computations that are supported by the KeOps engine. Going forward,
we note that our library could probably be used as an efficient GPU backend for approximate KNN
methods [31, 54, 118] and intend to provide the relevant tools for researchers in the field.
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Table 1: Fitting a Gaussian Mixture Model: we perform 10 iterations of the standard EM algorithm
with N points and K components in dimension D.

Covariances N K D Sklearn PyTorch Ours
Diagonal 50k 100 5 2.9 s 19.0 ms 33 ms
Diagonal 500k 1k 5 286 s 0.94 s 0.22 s
Diagonal 5M 10k 5 ∞ mem 11.38 s
Diagonal 500k 1k 50 ∞ mem 2.96 s
Diagonal 5M 10k 50 ∞ mem 245 s

Full 50k 100 5 6.9 s 0.23 s 0.04 s
Full 500k 1k 5 830 s mem 0.362s
Full 50k 100 20 16.0 s mem 0.84 s
Full 500k 1k 20 ∞ mem 63 s

Table 2: KNN search: average queries per second with a dataset of N points in dimension D. We
work with batches of 10k queries at a time and K = 10 neighbors. The first three columns correspond
to schemes that are provided by the FAISS library; the approximate methods HNSW and IVF-Flat
are tuned to provide a minimum recall of 90% and optimize runtimes (we use the parameters of the
ANN-benchmarks website as a first reference); when relevant, the pre-processing time is reported in
parenthesis. We stress that choosing optimal parameters for the HNSW and IVF-Flat routines is a
fairly complex problem: as non-specialists, we cannot guarantee that our experiments reflect the best
level of performance that can be reached by these impressive methods. This is especially true for
the IVF-PQ routine that is provided by FAISS and combines the IVF algorithm with a quantization
method: it certainly fares even better than IVF-Flat on large-scale problems, but we found it to be
very complex to use and opted to not include our unreliable benchmarks in this Table. High number
of queries and low pre-processing is better: we highlight the column with the fastest time to process
N queries and thus build a KNN graph for the dataset. (*) performed with smaller batch sizes when
necessary to avoid memory overflows

Dataset, metric N D HNSW (CPU) Bruteforce IVF-Flat PyTorch* JAX* Ours

Random, L2 10k 3 1.5e6 (0.15s) 3.3e6 1.9e6 8.8e5 1.6e5 6.8e6
Random, L2 1M 3 1.3e6 (25s) 5.0e4 1.6e6 6.8e3 5.5e2 1.8e5
Random, L2 1M 10 3.1e5 (53s) 4.6e4 2.9e5 4.9e3 4.9e2 1.1e5
Random, L2 1M 100 1.5e3 (540s) 3.1e4 mem 9.0e2 4.0e2 1.4e4
Random, L2 10M 100 (∞) 3.2e3 mem ∞ ∞ 1.4e3

Random, L1 1M 10 — — — 1.7e3 4.6e2 1.1e5
Random, L1 1M 100 — — — 2.1e2 3.0e2 1.5e4

MNIST, L2 60k 784 5.4e4 (14s) 1.5e5 2.2e5 4.7e4 3.4e3 2.5e4
MNIST, L1 60k 784 — — — 5.7e2 2.0e3 2.5e4

GloVe-25, 〈 , 〉 1.2M 25 7.7e4 (130s) 4.2e4 1.6e5 2.7e3 4.1e2 4.8e4
GloVe-100, 〈 , 〉 1.2M 100 8.6e3 (480s) 2.6e4 3.9e4 6.8e2 3.3e2 1.3e4

Random, 〈 , 〉 1M 10 1.8e5 (77s) 4.6e4 2.7e5 5.2e3 5.3e2 1.5e5
Random, HD 1M 10 — — — 3.2e3 5.1e2 7.1e4

Table 3: Accelerating geometric deep learning architectures: shown is average training / inference
time per shape on the ShapeNet dataset, with clouds of N = 2, 048 points in dimension D = 3.

PointCNN→ Ours DGCNN→ Ours
training 254 ms → 128 ms 170 ms → 80 ms

inference 172 ms → 43 ms 109 ms → 20 ms
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5.3 Geometric deep learning and geometric primitives

Geometric deep learning. Fast low-dimensional KNN search has important applications in the
field of geometric deep learning [16], a popular class of algorithms now ubiquitous in 3D computer
vision and graphics [110]. As a first illustration, we use KeOps to speed-up two popular networks
for 3D point cloud segmentation: Point CNNs [75] and Dynamic Graph CNNs (DGCNN) [110].
We follow closely the original architectures for part segmentation on the ShapeNet dataset [19] and
compare two different implementations: a reference PyTorch_Geometric code [36] and a hybrid
PyTorch_Geometric+KeOps implementation, where KNN graphs are built as in Section 5.2. Results
are summarized in Table 3: training denotes a full “forward + backward” pass through the network
whereas inference is forward only, with a faster batch normalisation [59]. Note that the Deep Graph
Library [109] relies on a bruteforce PyTorch implementation for KNN search and behaves like Py-
Torch_Geometric on these problems. In practice, the switch to KeOps provides ×2 and ×5 speedups
for training and inference times, respectively: the construction of KNN graphs becomes a negligible
overhead, while the majority of the network runtime is spent on MLP and batch normalization layers.

Geometric descriptors at all scales. Table 4 shows the results of using KeOps to compute geo-
metric features on generalized point clouds. In the interaction step (1), these correspond to the case
where the reduction � is a (possibly weighted) average on a neighborhood of xi and the formula
F is a function of the difference xi − yj ∈ RD: the identity x 7→ x, an outer product x 7→ xx> or
a multi-layer perceptron with H hidden neurons and O output features. Neighborhoods are either
defined through a 40-nearest neighbors query or by weighting each pair of points with a window of
radius σ such as:

k(xi, yj) = exp(−‖xi − yj‖2/2σ2). (2)

Our library is well suited for these computations and consistently outperforms the PyTorch and JAX
baselines by up to two orders of magnitude. We remark that on clouds of N = 2,048 points, our
bruteforce scheme (set radius) is up to an order of magnitude faster than the best sparse methods,
which rely on scattered memory accesses to build neighborhoods as (N,K,D) arrays. A similar
behavior is observed for chamfer and Energy distance computations [14, 99]. These results highlight
the dichotomy between contiguous (“bruteforce”) and scattered (“sparse”) memory accesses, which
are optimized separately by GPUs and are best suited to different types of computations. We stress
that KeOps supports the specification of block-wise sparsity schemes, which let users implement
tree-based pruning strategies to best leverage the structure of their problems.

Conclusion. Overall, our library enables the quick development of differentiable layers for geo-
metric deep learning which are an order of magnitude faster than Python baselines. It factors out
C++ boilerplate code for point cloud processing and lets researchers focus on their models. We
thus believe that KeOps will be of utmost interest to the developers of shape analysis frameworks
[12, 36, 60, 92, 103] and CUDA kernels for point cloud convolution [35, 102, 119]. Future develop-
ments may also be relevant to natural language processing: transformer architectures and attention
layers fit a similar design pattern, albeit in higher-dimensional spaces [100, 106, 113].

Table 4: Accelerating geometric primitives: average time per shape on the ShapeNet dataset, with
clouds of N = 2, 048 points in dimension D = 3.

PyTorch JAX Ours
Primitive / Neighborhood 40-NN 40-NN Set radius 40-NN Set radius

Local mean vectors 686 µs 1,052 µs 469 µs 121 µs 12 µs
Local covariance matrices 700 µs 1,093 µs 1,259 µs 138 µs 23 µs
MLP features (H = O = 8) 737 µs 1,180 µs 4,089 µs 192 µs 75 µs
MLP features (H = O = 16) 775 µs 1,253 µs 7,043 µs 240 µs 649 µs

Chamfer loss 374 µs 130 µs 21 µs
Energy distance 486 µs 378 µs 31 µs
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5.4 Easing the development of complex geometric programs

Dimension reduction and geometric embeddings. The uniform manifold approximation and
projection (UMAP) algorithm [79] is a standard method for dimension reduction. It can be used with
various input metrics and relies on the analysis of a KNN graph of the input data. To showcase the
benefits of KeOps for data analysis, we benchmark three different implementations of this method:
the reference CPU-only library [79]; CuML, a fast GPU implementation that relies on FAISS for
nearest neighbor queries [65, 91]; and a custom CuML+KeOps implementation. As typical examples
of UMAP for visualization, we embed several datasets in the Euclidean plane: the digits, SIFT and
MNIST datasets (endowed with the Euclidean and Manhattan metrics); the Glove-25 dataset (cosine
similarity); and the HyperE-10 and -50 embeddings (hyperbolic metric).

Since the initial construction of the KNN graph is the most compute-intensive part of the UMAP
algorithm, results are similar to those of Section 5.2 (a full table of results is provided in the
Supplementary Materials). KeOps provides a×2−5 speed-up for the visualization of low-dimensional
datasets, but is outperformed by CuML+FAISS when the input dimension D exceeds 50. Crucially,
we provide the only GPU method that can handle non-Euclidean metrics: for hyperbolic embeddings,
our implementation is ×200 faster than the baseline on the HyperE-10 and -50 datasets [72, 83].

Optimal transport. Optimal transport (OT) is a generalization of sorting to spaces of dimension
D > 1 [81, 107]. It revolves around the resolution of a linear optimization problem whose value
is usually known as the Wasserstein or Earth Mover’s distance between two point clouds (xi) and
(yj) [68, 93]. As detailed in [37, 89], modern OT solvers rely on iterated reductions performed on
a cost matrix C(xi, yj) = ‖xi − yj‖ or 1

2‖xi − yj‖
2 and stand to benefit greatly from our library.

To demonstrate this, we benchmark an exact linear solver [13, 42] against several variants and
implementations of the Sinkhorn algorithm: a vanilla Sinkhorn loop [27, 29, 34, 41, 44, 94, 98, 112,
117]; an accelerated algorithm with simulated annealing [71]; and a fast multiscale scheme with
kernel truncation [10, 96]. For the sake of numerical stability, we use symmetric updates [70] and
perform all computations in the logarithmic domain [23]. To reflect the varied use cases of OT in the
machine learning literature, we tackle two different problems: a high-precision matching between
deformations of the Stanford dragon in dimension D = 3, and a low-precision matching between
deformations of the Glove-25 dataset in dimension D = 25. These two regimes correspond to typical
applications in computer vision [24, 38] and statistics [43, 46, 48], respectively.

A table of results is provided in the Supplementary Materials. In all settings, the switch from a
PyTorch implementation to KeOps provides a ×5 − 20 speed-up with no loss of precision. Most
importantly, the low memory footprint of symbolic LazyTensors allows us to scale up to large
problems (N,M > 100k) without memory overflows. Our support for block-wise sparsity masks
also lets us provide the first implementation of a multiscale solver for discrete OT on the GPU.
In practice, this means that large OT problems with N = 100k or 1M samples can now be solved
with high precision in fractions of a second instead of minutes or hours [37]. This implementation
is straightforward to generalize to stochastic settings [2, 3, 47] and non-Euclidean cost functions
[9, 28, 30]: we believe that it will open new ranges of applications to the OT community [37, 39].

6 Conclusion

KeOps combines a user-friendly interface with a high level of performance: we believe that it fills an
important niche in the machine learning toolbox. We hope that our library will stimulate research in
the field, with a simple but powerful structure that makes it a good tool for research off the beaten
track. We look forward to feedback from users and keep the door open for contributors.

In months to come, our priority will be to improve performances on high-dimensional vectors with
the newly released GPU Tensor cores and add support for quantization or approximation schemes
such as the Nyström and FFM methods [5, 111]. We also work towards easing the deployment of
pre-compiled binaries and target support of the ONNX standard [6]. These improvements should
allow KeOps to become a standard toolbox in the field, both as an efficient backend for high-level
software [12, 40, 45, 80] and as a versatile prototyping tool for theoretical research.
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Broader Impact

Our work targets a wide range of machine learning applications, from kernel methods to geometric
deep learning. In these fields, our library lowers the barrier of entry to state-of-the-art performances:
fast nearest neighbors queries or point cloud convolutions can now be implemented by researchers
who have no background in parallel computing. We hope that this will empower small research
teams and organizations who don’t have access to dedicated teams of software engineers. More
specifically, the flexibility of our library is ideally suited to the formulation of data-driven models
for shape analysis and point cloud processing. Progress in these sectors can have a major impact in
computer vision and medical imaging – topics that carry both risks and promises for society as a
whole. We hope that our library will promote the growth of a diverse ecosystem of academic and
industrial actors, and look forward to seeing applications of our work to e.g. computational anatomy.
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Extended benchmarks and implementations

Content of the supplementary materials. Our library is freely available on the PyPi (pip
install pykeops) and CRAN (install.packages("rkeops")) repositories. Its user interface
and inner workings are fully documented on our website (www.kernel-operations.io), with
source code available under the permissive MIT license (www.github.com/getkeops/keops).

The full codes for our benchmarks have been integrated to our documentation as tutorials. In the
pages below, we present supporting material for the discussion of Section 5: we include all the
relevant equations, code samples and tables of results. The hardware configuration and datasets are
described at the start of Section 5.

A Kernel methods

Kernels, Gaussian process regression. As discussed in Section 5.1, KeOps is ideally suited to the
implementation of kernel methods: LazyTensors can be used to represent arbitrary kernel matrices
with a low memory footprint and high performance. As an example, we show how to interface our
library with the standard solvers of the scipy.sparse.linalg package [66] – a reference toolbox
for e.g. the computation of Laplacian eigenvectors on graphs and meshes.

SciPy interface. If x = (xi) ∈ RN×D is a cloud of N points in RD and if b = (bi) ∈ RN×E is a
signal of dimension E supported by the xi’s, the code below implements a fast conjugate gradient
solver for the resolution of a linear system with respect to a = (ai) ∈ RN×E:

b = (α Id +Kx,x) a i.e. a = (α Id +Kx,x)−1 b , (3)

where Kx,x = (Kxi,xj
) = (exp(−‖xi − xj‖/σ) is a (N,N) symmetric positive definite matrix

associated to an exponential kernel of radius σ > 0 and where α > 0 is the strength of a L2-Tikhonov
regularization. This operation is a the heart of Gaussian process regression [57]: it is usually known
as Kriging in geostatistics, kernel regression in data sciences or spline regression in imaging. We
illustrate some typical use cases in Figure 3.

1 import numpy as np # NumPy arrays on the CPU
2 from scipy.sparse import diags # Sparse diagonal matrices
3 from scipy.sparse.linalg import aslinearoperator, cg # Conjugate gradient
4 from pykeops.numpy import LazyTensor # Symbolic wrapper for NumPy arrays
5

6 # Toy problem in dimension D = 50:
7 N, D, E = 10 ** 6, 50, 1 # samples, features, signals
8 x = np.random.randn(N, D).astype('float32') # float16, float32 and float64
9 b = np.random.randn(N, E).astype('float32') # are all supported by KeOps.

10

11 sigma = .2 # radius of the exponential kernel
12 alpha = .5 # ridge/Tikhonov regularization
13

14 # Build the symbolic (N, N) kernel matrix:
15 x_i = LazyTensor(x.reshape(N, 1, D)) # (N, 1, D) data samples
16 x_j = LazyTensor(x.reshape(1, N, D)) # (1, N, D) data samples
17

18 D_ij = ((x_i - x_j) ** 2).sum(2).sqrt() # (N, N) distances
19 K_ij = (- D_ij / sigma).exp() # (N, N) exponential kernel matrix
20

21 # Turn the LazyTensor into a SciPy object, add Tikhonov regularization:
22 K = aslinearoperator(K_ij) # Transparent duck typing from KeOps to SciPy
23 Ka = K + aslinearoperator(diags(alpha * np.ones(N))) # Standard SciPy syntax
24 Ka.dtype = np.dtype('float32') # Use the correct precision
25

26 # Interface KeOps with all the standard solvers of scipy.sparse.linalg:
27 a = cg(Ka, b) # Conjugate gradient: eigenproblem solvers, etc. are also supported.
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(a) Kernel regression in 1D. (b) Kriging in 2D.

Figure 3: Kriging, also known as kernel, spline or Gaussian process regression is a fundamental
tool in data sciences that relies on the resolution of large kernel linear systems (3). Out-of-the-box,
our symbolic tensors can be interfaced with standard libraries for linear algebra such as SciPy [66].
This lets users scale up standard iterative solvers to datasets of N = 10k to 10M samples in seconds
or minutes. (a) As a first example, we work with a Gaussian kernel k(x, y) = exp(−|x− y|2/2σ2)
of deviation σ = 0.1 on the real line. We use N =10k samples in dimension D = 1, with a
scalar-valued signal (E = 1): we represent the data with blue points (xi, bi) in the graph. The red
curve corresponds to the kernel regression x 7→

∑N
i=1 k(x, xi) ai, a smooth curve that does not

overfit to noise thanks to the Tikhonov regularization. (b) The second example is representative of
applications to geostatistics: we work with N =10k samples in dimension D = 2. Thanks to an
exponential kernel of deviation σ = 0.1 and a small amount of Tikhonov regularization, we retrieve
a continuous interpolation of a noisy scalar signal (E = 1) on the whole domain: a plausible terrain
model, displayed as an image in the background while every point corresponds to a sample xi with
color bi. The flexible structure of our library empowers researchers, who can use LazyTensors to
perform fast kernel regressions on arbitrary domains, such as the sphere or the Poincaré plane.

Performance. Providing rigorous and precise benchmarks for iterative linear solvers is an arduous
task: a wide range of methods have been proposed to accelerate the resolution of systems that involve
e.g. smooth kernel functions. Depending on their specific needs, users often have to pick a method
and parameter values that reach a satisfying trade-off between speed and accuracy.

Nevertheless, according to our experiments with default precision settings, N = 1k to 10M points
in dimension D = 1 to 100 and varied kernel functions (Gaussian, exponential, Cauchy, etc.), we
observe that SciPy+KeOps implementations are consistently ×10-50 times faster than their standard
PyTorch counterparts (torch.solve(...)) and ×1,000-5,000 times faster than a vanilla resolution
with SciPy on the CPU. These speed-ups come from our efficient use of CUDA registers and could
be applied to accelerate most large-scale solvers in the field [57]: we believe that our library will be
of interest to many researchers who work with Gaussian processes or kernel matrices.

B Clustering

B.1 K-Means: Lloyd’s algorithm

Fast clustering with K-means. We now discuss the applications of symbolic tensors to clustering.
We first consider the problem of partitioning a dataset (xi) ∈ RN×D of N points in RD in K distinct
clusters. The K-means method or (discrete) “Lloyd’s algorithm” is probably the most common
approach to the question: we work with a collection (ck) ∈ RK×D of K cluster “centroids” in RD,
class labels (li) ∈ [[1,K]]N for every point xi and update both parameters alternatively to minimize
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the within-cluster sum of squared distances:

SSD(ck, li) =

K∑
k=1

∑
li=k

‖xi − ck‖2. (4)

At every iteration of the K-means loop, we first assign each point xi to the closest centroid ck (i.e.
minimize SSD with respect to the li’s) before updating ck as the mean of all points xi such that
li = k. Using KeOps for the assignment step, we can write a fast and simple implementation of this
algorithm as follows:

1 def KMeans(x, K, niter, verbose=True):
2 """
3 points -> labels, centroids
4 (N, D) -> (N,), (K, D)
5 """
6 N, D = x.shape # Number of samples, dimension of the ambient space
7

8 c = x[:K, :].clone() # Simple initialization for the centroids
9 # Encoding as symbolic tensors:

10 x_i = LazyTensor(x.view(N, 1, D)) # (N, 1, D) symbolic tensor
11 c_j = LazyTensor(c.view(1, K, D)) # (1, K, D) symbolic tensor
12

13 for _ in range(niter): # K-means loop
14 # Assignment step:
15 D_ij = ((x_i - c_j) ** 2).sum(-1) # (N, K) squared distances
16 l = D_ij.argmin(dim=1).long().view(-1) # Points -> Nearest cluster
17

18 # Compute the cluster mean values:
19 weights = torch.bincount(l).type_as(x)
20 for d in range(D): # In-place update of the centroids:
21 c[:, d] = torch.bincount(l, weights=x[:, d]) / weights
22

23 return l, c # Labels, centroids

Note that we use a weighted torch.bincount method for the update step, which avoids looping
over the class index in [[1,K]]. In practice, this second step relies on scattered memory accesses and
is the bottleneck of the K-means loop for small-scale problems. On our system, with N =1M, K =1k
and D = 100, this implementation performs 10 iterations in less than a second (0.81s on average).

Manhattan distance. Our library is versatile, and lets users prototype arbitrary generalizations
of standard algorithms. For instance, we can easily implement an L1-Manhattan variant of Lloyd’s
algorithm to minimize the robust cost function:

SDL1(ck, li) =

K∑
k=1

∑
li=k

‖xi − ck‖1 =

K∑
k=1

∑
li=k

D∑
d=1

|xi[d]− ck[d] | . (5)

In the assignment step, we replace the squared Euclidean norms by Manhattan distances, prior to the
nearest neighbour search:

15 D_ij = ((x_i - c_j).abs()).sum(-1) # (N, K) Manhattan distances

As for the update step, we replace means by medians to compute the new centroids ck:

18 # Update cluster centroids:
19 for k in range(K):
20 c[k,:] = torch.median(x[l==k,:], dim=0)[0]

Note that in this case, there is no simple way of avoiding a loop over K for the update step with
PyTorch. As a consequence, the performance of this implementation drops to an average of 1.85s for
the same test dimensions – N =1M, K =1k, D =100 and 10 iterations.
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(a) Lloyd’s algorithm. (b) Lloyd’s algorithm, L1 variant.

(c) GMM with diagonal covariances. (d) GMM with full covariances.

Figure 4: Clustering of a synthetic 2D dataset (N = 10k, D = 2), into K = 5 classes with four
different methods. (a) The standard Lloyd’s algorithm for the L2-Euclidean metric. (b) A variant of
Lloyd’s algorithm for the L1-Manhattan metric. (c) The EM algorithm on a Gaussian mixture model
with diagonal covariances. (d) The EM algorithm on a Gaussian mixture model with full covariances.
We display the points xi in the unit square, colored according to the class labels li. For the Gaussian
mixture models (c-d), we also display the model likelihood (6) in the background, with colors that
reflect the dominant cluster at any given location. All the experiments were performed using KeOps,
following the implementations of Section B.

B.2 Gaussian mixture models: the EM algorithm

Notations. We now detail the content of Table 1. We consider a dataset (xi) ∈ RN×D of N points
in RD and fit a Gaussian mixture model GMM(wj , µj ,Σj ; j ∈ [[1,K]]) that is parameterized by a
collection of K:

1. weights wj > 0 that sum up to 1,
2. mean values µj ∈ RD,
3. covariance matrices Σj ∈ RD×D.

The likelihood of the model at any point x ∈ RD is given by:

likelihood(x) =

K∑
j=1

wj

(2π)D/2
√

det(Σj)
exp

(
− 1

2 (x− µj)>Σ−1j (x− µj)
)
. (6)
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EM iterations. Starting from a random initialization, we fit the model to the data using the standard
Expectation-Maximization algorithm. Its iterations read as follows:

1. E-step: compute membership probabilities. For every point xi and component (wj , µj ,Σj),
we compute the likelihood ratio:

πi,j =
likelihoodj-th component(xi)

likelihoodfull(xi)
(7)

=
wj exp

(
− 1

2 (xi − µj)>Σ−1j (xi − µj)
)
/
√

det(Σj)∑K
k=1 wk exp

(
− 1

2 (xi − µk)>Σ−1k (xi − µk)
)
/
√

det(Σk)
(8)

(πi,j) ∈ RN×K
>0 is encoded as a (N,K) array whose lines sum up to 1.

2. M-step: update the model parameters. We execute sequentially the following equations:

Pj ←
∑N
i=1 πi,j , wj ← Pj/N , (9)

µj ←
1

Pj

∑N
i=1 πi,jxi , Σj ←

1

Pj

∑N
i=1 πi,j(xi − µj)(xi − µj)> . (10)

For the sake of numerical stability, we add a small value ε = 10−7 to the class scores Pj
when they are used as denominators. Alternatively, we could work with their logarithms and
stabilized log-sum-exp reductions: these are fully supported by our library.

Inverting the K covariance matrices Σj to compute the precisions Σ−1j ∈ RD×D for every E-step can
be costly. In Table 1, we also benchmark an alternative version of the algorithm where the covariances
are assumed to be diagonal matrices and encoded as positive vectors σj ∈ RD.

1 # Input: points is (N, D)
2 # Params: weights is (K,), means is (K, D), covariances is (K, D, D)
3

4 for _ in range(niter):
5 # Expectation step: compute membership probabilities ------------------
6 # Compute mixture weights:
7 precisions = covariances.inverse() # (K, D, D)
8 w = weights * torch.sqrt(precisions.det()) # (K,)
9

10 # Encoding as symbolic tensors:
11 x_i = LazyTensor(points.view(N, 1, D)) # (N, 1, D)
12 m_j = LazyTensor( means.view(1, K, D)) # (1, K, D)
13 w_j = LazyTensor(w.view(1, K, 1)) # (1, K, 1)
14

15 # Gaussian likelihoods:
16 P_j = LazyTensor(precisions.reshape(1, K, D * D)) # (1, K, D*D)
17 D_ij = ((x_i - m_j) * P_j.matvecmult(x_i - m_j)).sum(dim=2) # (N, K)
18 K_ij = (- D_ij / 2).exp() * w_j # (N, K)
19

20 # Bayes normalization constant:
21 BN = K_ij.sum(dim=1) # (N,)
22 BN_i = LazyTensor(BN.view(N, 1, 1) + eps) # (N, 1)
23

24 # Compute the membership probabilities:
25 P_ij = K_ij / BN_i # (N, K)
26

27 # Maximization step: update the mixture parameters -------------------
28 P = P_ij.sum(dim=0) # (K, 1)
29 weights = P.view(-1) / N # (K,)
30 means = (P_ij * x_i).sum(dim=0) / (P + eps) # (K, D)
31

32 # New means to compute the adjusted covariances:
33 m_j = LazyTensor(means.view(1, K, D)) # (1, K, D)
34

35 # Covariance matrices
36 covariances = (P_ij * (x_i-m_j).tensorprod(x_i-m_j)).sum(0).view(K,D,D)
37 covariances = covariances / (P.view(K, 1, 1) + eps) # (K, D, D)
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C Dimensionality reduction

As discussed in Section 5.3, we benchmark: the original UMAP implementation on the CPU; the
CuML+FAISS implementation on the GPU; a CUML+KeOps pipeline which relies on symbolic
tensors to build the KNN graph of a dataset before relying on CuML to construct the low-dimensional
embedding. This pipeline allows us to compute UMAP embeddings with arbitrary metrics on the
input datasets: it is indicative of the versatility of KeOps, which can be interfaced with a wide range of
standard libraries. Results are presented in Table 5, with examples of embeddings shown in Figure 5.

Note on the hyperbolic metric. The HyperE-10 and -50 datasets provide reference embeddings of
real world data into hyperbolic spaces of dimensions 10 and 50. In practice, the datasets both rely on
the Poincaré ball model and provide a scaling factor that should be used to recover the hyperbolic
distance between any two vectors. If xi and xj are two samples in the dataset, encoded as vectors of
norms ‖xi‖, ‖xj‖ < 1 in RD, the hyperbolic distance between them is given by:

d(xi, xj) = arccosh

(
1 + 2

‖xi − xj‖2

(1− ‖xi‖2)(1− ‖xj‖2)

)
/ ScalingFactor , (11)

where ‖ · ‖ denotes the standard Euclidean norm in RD. In order to perform a KNN search efficiently,
we remark that x 7→ arccosh(1 + 2x) is an increasing mapping. Since the values of (1− ‖xi‖2) can
be computed ahead of the KNN reduction, we can build our KNN graph with:

1 # x is a (N, D) array with double precision. We first compute the scaling factors:
2 u = 1. / (1. - (x ** 2).sum(dim=1)) # With double = float64 precision.
3 x, u = x.float(), u.float() # We can use float32 precision after this step.
4

5 # And encode our variables as symbolic tensors:
6 x_i = LazyTensor(x.view(N, 1, D))
7 x_j = LazyTensor(x.view(1, N, D))
8 u_i = LazyTensor(u.view(N, 1, 1))
9 u_j = LazyTensor(u.view(1, N, 1))

10

11 # We can then perform the KNN search efficiently:
12 D_ij = ((x_i - x_j) ** 2).sum(dim=2) * u_i * u_j
13 distances, indices = D_ij.Kmin_argKmin(K, dim = 1)
14

15 # And compute the genuine hyperbolic distances to the K-nearest neighbors:
16 acosh = lambda x : torch.log( x + (x ** 2 - 1.) ** 0.5)
17 distances = arccosh(1. + 2 * distances) / scaling_factor

Table 5: Dimension reduction using the UMAP algorithm. We record the time to embed datasets
in the Euclidean plane. When the input metric is Euclidean, the dataset is first pre-processed with a
PCA as advised by the UMAP documentation: we keep 95% of the total variance.

Dataset Metric N D PCA preprocessing Umap CuML CuML+Ours

Digits L2 1.8k 64 4 ms→ D′ = 28 5.8 s 170 ms 32 ms

MNIST L2 60k 784 68 ms→ D′ = 153 38 s 450 ms 670 ms
MNIST L1 60k 784 —- 43 s —- 2.3 s

SIFT L2 1M 128 64 ms→ D′ = 71 1,380 s 28 s 53 s

GloVe-25 〈 , 〉 1.2M 25 —- 1,660 s 31 s 29 s

HyperE-10 HD 105k 10 —- 150 s —- 560 ms
HyperE-50 HD 105k 50 —- 200 s —- 900 ms
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Figure 5: UMAP embeddings into the Euclidean plane. Top: MNIST dataset with a Manhattan input
metric, colored by label. Bottom: HyperE-50 (WordNet) dataset with a hyperbolic input metric.
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D Geometric primitives

Weighted average on a neighborhood. We now detail the results of Table 4. As described in
Section 5.3, we consider batches of B point clouds (xi) ∈ RN×D, with N = 2,048 and D = 3.
Depending on the memory footprint of the computations, B is equal to 1, 10 or 100 and ensures
that GPU cores are used efficiently: batches of point clouds are encoded as large (B,N,D) arrays.
Following standard procedure for point cloud processing, we compute local features as:

ai ←
∑M
j=1 w(xi, xj)F (xi, xj)∑M

j=1 w(xi, xj)
, ∀i ∈ [[1,N]] (12)

where w(xi, xj) > 0 is a weight on the interaction (xi, xj) and F is a vector-valued function.

In our benchmarks, we consider two types of weight functions w:

1. A KNN window w(xi, xj) which is equal to 1 if xj is one of the K = 40 nearest neighbors
of xi and 0 otherwise. It is implemented using a batched KNN search in dimension D = 3
and advanced indexing operators. Just as in Table 3, we use KeOps to accelerate the
construction of the KNN graph and otherwise rely on standard PyTorch syntax to build up
local neighborhoods as (B,N,K,D) arrays.

2. A Gaussian window of radius σ > 0:
w(xi, xj) = exp

(
− ‖xi − xj‖2 / 2σ2

)
. (13)

It is implemented using symbolic operations, as detailed below.

Local mean. In our first example, we compute the local average:

µi ←
∑M
j=1 w(xi, xj)xj∑M
j=1 w(xi, xj)

∈ RD, ∀i ∈ [[1,N]] . (14)

In the code below, we compute both the numerator and denominator in one pass through the data.
The trick is to append a “1” to the feature vectors xj in order to retrieve both:

wi ←
∑M
j=1 w(xi, xj) · 1 and mi ←

∑M
j=1 w(xi, xj)xj (15)

with a single reduction call.

1 def local_mean(points, radius):
2 """
3 points, radius -> means
4 (B, N, D), 1 -> (B, N, D)
5 """
6 B, N, D = point.shape # Batch-size, number of points, features
7 points = points / radius # Normalize the window size to 1
8

9 # Add a "1" at the start of every vector, retrieve a (B, N, D+1) array:
10 x = torch.cat((torch.ones_like(points[:,:,:1]), points), dim = -1)
11

12 # Encode as symbolic tensors:
13 x_i = LazyTensor(x.view(B, N, 1, D+1)) # (B, N, 1, D+1)
14 x_j = LazyTensor(x.view(B, 1, N, D+1)) # (B, 1, N, D+1)
15

16 # Neighborhood window - a Gaussian function:
17 D_ij = ((x_i - x_j) ** 2).sum(-1) # (B, N, N), squared distances
18 K_ij = (- D_ij / 2).exp() # (B, N, N), Gaussian kernel
19

20 # Local sum:
21 M_ij = K_ij * x_j # (B, N, N, D+1)
22 M_i = M_ij.sum(dim = 2) # (B, N, D+1) : weights and sums
23

24 # Normalize by the sum of the weights:
25 w_i = M_i[:,:,:1] # (B, N, 1)
26 m_i = M_i[:,:,1:] # (B, N, D)
27 return radius * m_i / w_i # (B, N, D)
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Local covariance. In our second example, we compute the local covariance matrices:

Σi ←
∑M
j=1 w(xi, xj) (xj − µi)(xj − µi)>∑M

j=1 w(xi, xj)
∈ RD×D, ∀i ∈ [[1,N]] , (16)

where µi is defined as in (14). Using standard identities, we can rewrite this local descriptor as:

Σi ←
1

wi

(
ci −

1

wi
mim

>
i

)
, (17)

where:

wi ←
M∑
j=1

w(xi, xj) , (18)

mi ←
M∑
j=1

w(xi, xj)xj , (19)

ci ←
M∑
j=1

w(xi, xj)xjx
>
j . (20)

For optimal performances, we rely on the same trick as in (15) to compute all these quantities in one
pass through the data. We append a “1” at the start of every vector xj and compute: wi mi

m>i ci

 = Ci ←
M∑
j=1

w(xi, xj) [1, xj ][1, xj ]
> (21)

1 def local_covariance(points, radius):
2 """
3 points, radius -> covariances
4 (B, N, D), 1 -> (B, N, D, D)
5 """
6 B, N, D = point.shape # Batch-size, number of points, features
7 points = points / radius # Normalize the window size to 1
8

9 # Add a "1" at the start of every vector, retrieve a (B, N, D+1) array:
10 x = torch.cat((torch.ones_like(points[:,:,:1]), points), dim=-1) # (B, N, D+1)
11

12 # Encode as symbolic tensors:
13 x_i = LazyTensor(x[:,:,None,:]) # (B, N, 1, D+1)
14 x_j = LazyTensor(x[:,None,:,:]) # (B, 1, N, D+1)
15

16 # Neighborhood window - a Gaussian function:
17 D_ij = ((x_i - x_j) ** 2).sum(-1) # (B, N, N), squared distances
18 K_ij = (- D_ij / 2).exp() # (B, N, N), Gaussian kernel
19

20 # Local sum - compute descriptors of order 0, 1 and 2:
21 C_ij = (K_ij * x_j).tensorprod(x_j) # (B, N, N, (D+1)*(D+1))
22 C_i = C_ij.sum(dim = 2).view(B, N, D+1, D+1) # (B, N, D+1, D+1)
23

24 # Extract local descriptors of order 0, 1 and 2:
25 w_i = C_i[:,:,:1,:1] # (B, N, 1, 1), weights
26 m_i = C_i[:,:,:1,1:] * radius # (B, N, 1, D), sum
27 c_i = C_i[:,:,1:,1:] * (radius**2) # (B, N, D, D), outer products
28

29 # Compute the covariance matrix:
30 cov_i = (c_i - (m_i.transpose(3, 2) * m_i) / w_i) / w_i # (B, N, D, D)
31 return cov_i
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MLP features. Going further, we show how to use our library to compute neural features. Follow-
ing standard practice in geometric deep learning, we rely on a multi-layer perceptron:

F : x ∈ RD 7→ A2 ReLU(A1x+ b1) + b2 ∈ RO (22)

parameterized by weight matrices A1 ∈ RH×D, A2 ∈ RO×H and bias vectors b1 ∈ RH, b2 ∈ RO.
“ReLU” denotes the rectified linear unit, or positive part, applied coordinate-wise on vectors of RH.
For the sake of simplicity, we compute the MLP correlations:

ai ←
M∑
j=1

w(xi, xj)F (xj − xi) (23)

=

M∑
j=1

w(xi, xj) (A2 ReLU(fj − fi + b1) + b2) , (24)

where the hidden features fi = A1xi are computed ahead of the sum reduction. We stress that the
code below is fully differentiable: gradients can be computed with respect to all parameters.

We note that the matrix-vector product with A2 is a O(OH) operation. In practice, our bruteforce
CUDA engine is most efficient if the product O · H is smaller than 100: beyond this threshold,
performance decrease sharply as in e.g. the fourth line of Table 4. KNN implementations are ideally
suited to the computation of localized but complex features, whereas symbolic matrices let us compute
efficiently simple descriptors at all scales.

1 def MLP_features(points, A_1, B_1, A_2, B_2, radius):
2 """
3 points, weights_1, bias_1, weights_2, bias_2, radius -> features
4 (B, N, D), (H, D), (H,), (O, H), (O,), 1 -> (B, N, O)
5 """
6 B, N, D = points.shape
7 x = points / radius # Normalize the window size to 1
8

9 # Apply the first linear operator on the features:
10 f = points @ A_1.t() # (B, N, H)
11

12 # Encode the variables as symbolic tensors:
13 # Positions:
14 x_i = LazyTensor(x.view(B, N, 1, D)) # (B, N, 1, D)
15 x_j = LazyTensor(x.view(B, 1, N, D)) # (B, 1, N, D)
16 # Features:
17 f_i = LazyTensor(f.view(B, N, 1, -1)) # (B, N, 1, H)
18 f_j = LazyTensor(f.view(B, 1, N, -1)) # (B, 1, N, H)
19 # MLP parameters:
20 b_1 = LazyTensor(B_1.view(1, 1, 1, -1)) # (1, 1, 1, H)
21 a_2 = LazyTensor(A_2.view(1, 1, 1, -1)) # (1, 1, 1, O * H)
22 b_2 = LazyTensor(B_2.view(1, 1, 1, -1)) # (1, 1, 1, O)
23

24 # Compute the MLP values:
25 M_ij = (f_j - f_i + b_1).relu() # (B, N, N, H)
26 M_ij = a_2.matvecmult(M_ij) + b_2 # (B, N, N, O)
27

28 # Neighborhood window - a Gaussian function:
29 D_ij = ((x_i - x_j) ** 2).sum(-1) # (B, N, N), squared distances
30 K_ij = (- D_ij / 2).exp() # (B, N, N), Gaussian kernel
31

32 # Sum on the neighborhood:
33 C_ij = K_ij * M_ij # (B, N, N, O)
34 features = C_ij.sum(dim = 2) # (B, N, O)
35

36 return features
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Chamfer loss. Beyond geometric descriptors, symbolic tensors let us work efficiently with global,
geometric loss functions. If (xi) ∈ RN×D and (yj) ∈ RM×D are two clouds of N and M points in
RD, the “chamfer” or “soft-Hausdorff” loss between them reads:

Chamfer(xi, yj) =
1

2N

N∑
i=1

M
min
j=1
‖xi − yj‖ +

1

2M

M∑
j=1

N
min
i=1
‖xi − yj‖ . (25)

Variants of this formula are used, for instance, in the Iterative Closest Point (ICP) algorithm. We
leverage our fast nearest neighbor finder to implement it as follows:

1 def squared_distances(x, y):
2 """
3 source, target -> squared distances
4 (B, N, D), (B, M, D) -> (B, N, M)
5 """
6 B, N, D = x.shape # Batch size, number of source points, features
7 _, M, _ = y.shape # Batch size, number of target points, features
8

9 # Encode as symbolic tensors:
10 x_i = LazyTensor(x.view(B, N, 1, D)) # (B, N, 1, D)
11 y_j = LazyTensor(y.view(B, 1, M, D)) # (B, 1, M, D)
12

13 # Symbolic matrix of squared distances:
14 D_ij = ((x_i - y_j)**2).sum(-1) # (B, N, M), squared distances
15 return D_ij
16

17

18 def chamfer_loss(x, y):
19 """
20 source, target -> loss values
21 (B, N, D), (B, M, D) -> (B,)
22 """
23 D_ij = squared_distances(x, y) # (B, N, M) symbolic matrix
24 D_xy = D_ij.min(dim=2).sqrt() # (B, N), distances from x to y
25 D_yx = D_ij.min(dim=1).sqrt() # (B, M), distances from y to x
26 return (D_xy.mean(dim=1) + D_yx.mean(dim=1)).view(-1) / 2 # (B,)

Energy distance. Going further, we can combine symbolic tensors and sum reductions to compute
generic kernel norms, which produce smoother gradients for e.g. shape registration. These quantities
are also known as Maximum Mean Discrepancies (MMDs) in statistics or generalized electrostatic
energies in physics. As an example, the code below implements the Energy Distance [99]:

ED(xi, yj) =
1

NM

∑N
i=1

∑M
j=1‖xi − yj‖ (26)

− 1

2N2

∑N
i=1

∑N
j=1‖xi − xj‖ −

1

2M2

∑M
i=1

∑M
j=1‖yi − yj‖ .

1 def energy_distance(x, y):
2 """
3 source, target -> loss values
4 (B, N, D), (B, M, D) -> (B,)
5 """
6 N, M = x.shape[1], y.shape[1] # Numbers of source and target points
7

8 D_xy = squared_distances(x, y).sqrt().sum(dim=2) # (B, N), distances x<->y
9 D_xx = squared_distances(x, x).sqrt().sum(dim=2) # (B, N), distances x<->x

10 D_yy = squared_distances(y, y).sqrt().sum(dim=2) # (B, M), distances y<->y
11

12 return (D_xy.sum(dim=1) / (N*M)
13 - D_xx.sum(dim=1) / (2*N*N)
14 - D_yy.sum(dim=1) / (2*M*M)).view(-1) # (B,)
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E Optimal transport

The optimal transport problem. As discussed in Section 5.3, optimal transport generalizes sorting
to spaces of dimension D > 1. We now consider two point clouds (xi) ∈ RN×D, (yj) ∈ RM×D

with non-negative weights (αi) ∈ RN
>0 and (βj) ∈ RM

>0 that sum up to 1. These arrays encode two
discrete probability measures α and β on RD, understood as weighted sums of Dirac masses δx:

α =
∑N
i=1 αiδxi

and β =
∑M
j=1 βjδyj . (27)

If C(xi, yj) denotes an arbitrary cost function on RD × RD, the optimal transport cost between the
two discrete measures α and β reads:

OT(αi, xi, βj , yj) = min
(πi,j)∈RN×M

>0

N∑
i=1

M∑
j=1

πi,j C(xi, yj) (28)

subject to ∀ i, j, πi,j > 0, (π1)i =

M∑
j=1

πi,j = αi, (π>1)j =

N∑
i=1

πi,j = βj .

The optimal transport plan (πi,j) is a non-negative (N,M) array whose lines sum up to (αi) and
whose columns sum up to (βj). In the remainder of this section, we use the quadratic cost C(xi, yj) =
1
2‖xi−yj‖

2: up to a factor 1/2, the cost value OT(αi, xi, βj , yj) is the squared Wasserstein-2 distance
between α and β.

Dual problem. A fundamental remark was made by Kantorovitch in [68]: the linear optimization
problem (28) is equivalent to a simpler dual problem on variables of size N and M:

OT(αi, xi, βj , yj) = max
(fi)∈RN

(gj)∈RM

N∑
i=1

αifi +

M∑
j=1

βjgj s.t. ∀ i, j, fi + gj 6 C(xi, yj) . (29)

The dual vectors (fi) and (gj) are unique up to an additional constant. They are often understood as
the sampled values fi = f(xi), gj = g(yj) of continuous dual potentials on the input point clouds.

Entropic regularization. Optimal transport solvers compute the optimal dual vectors (fi) and (gj)
associated to any discrete input configuration (αi, xi, βj , yj). To this end, a common strategy is to
add a small entropic barrier to the primal problem (28). If ε > 0 is a positive temperature, we can
apply the Fenchel-Rockafellar theorem and write the regularized primal and dual problems as:

OTε(αi, xi, βj , yj) = min
(πi,j)∈RN×M

>0

N∑
i=1

M∑
j=1

πi,j C(xi, yj) (30)

+ ε

N∑
i=1

M∑
j=1

πi,j log
πi,j

αiβj
− πi,j + αiβj

subject to ∀ i, j, πi,j > 0, (π1)i =

M∑
j=1

πi,j = αi, (π>1)j =

N∑
i=1

πi,j = βj

= max
(fi)∈RN

(gj)∈RM

N∑
i=1

αifi +

M∑
j=1

βjgj + ε

N∑
i=1

M∑
j=1

αiβj

(
1− exp 1

ε

[
fi + gj − C(xi, yj)

])
. (31)

Up to a small perturbation, the optimal transport problem can thus be reduced to the resolution of (31),
a concave maximization problem on the dual vectors (fi) ∈ RN, (gj) ∈ RM that is smooth and
without constraints. The optimal dual potentials encode, implicitly, an optimal transport plan:

πi,j = αiβj exp 1
ε

[
fi + gj − C(xi, yj)

]
(32)

that satisfies the marginal constraints of (30), with an optimal transport cost that reads:

OTε(αi, xi, βj , yj) =

N∑
i=1

αifi +

M∑
j=1

βjgj . (33)
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The Sinkhorn algorithm. The standard Sinkhorn algorithm is equivalent to an alternate maximiza-
tion of (31) with respect to the dual vectors (fi) and (gj). Starting from null potentials fi = 0 and
gj = 0, its updates read:

fi ← −ε log

M∑
j=1

βj exp 1
ε

[
gj − C(xi, yj)

]
, ∀i ∈ [[1,N]] , (34)

gj ← −ε log

N∑
i=1

αi exp 1
ε

[
fi − C(xi, yj)

]
, ∀j ∈ [[1,M]] . (35)

This method has been (re-)discovered in many applied fields since the 1960’s [27, 29, 34, 41, 44,
94, 98, 112, 117], with minor variations on the exact formulation of the regularized problem. Most
authors work with the exponentiated variables:

ui = exp(fi/ε) and vj = exp(gj/ε) . (36)

The dual variables u = (ui) ∈ RN
>0 and v = (vj) ∈ RM

>0 are then initialized as uniform vectors of 1,
with updates that read:

u ← 1

K(βv)
and v ← 1

K>(αu)
. (37)

In the equations above, the inversions and multiplications βv, αu are applied coordinate-wise.
The (N,M) matrix K = (Ki,j) is the Gibbs kernel associated to C(xi, yj) at temperature ε with
coefficients:

Ki,j = exp
(
− C(xi, yj)/ε

)
. (38)

When C(xi, yj) = 1
2‖xi − yj‖

2, K is a Gaussian kernel matrix of deviation σ =
√
ε: this quantity is

best understood as the blur scale of the Gaussian smoothing that we apply on the transport plan πi,j
to lower the complexity of the optimization problem.

Stabilization. As detailed in the sinkhorn_loop_simple routine below, our library can be used
to implement efficiently the exponentiated Sinkhorn updates of (37). In practice though, these
iterations may induce numerical overflows and are notoriously unstable when

√
ε is too small.

Following [23, 37, 70], we rely instead on symmetrized updates performed in the logarithmic domain:

f̃i ← −ε log
∑M
j=1 βj exp 1

ε

[
gj − C(xi, yj)

]
, ∀i ∈ [[1,N]] , (39)

g̃j ← −ε log
∑N
i=1 αi exp 1

ε

[
fi − C(xi, yj)

]
, ∀j ∈ [[1,M]] , (40)

fi ← 1
2 (fi + f̃i) , ∀ i ∈ [[1,N]] , (41)

gj ← 1
2 (gj + g̃j) , ∀j ∈ [[1,M]] . (42)

This robust algorithm is implemented in the sinkhorn_loop_stable routine detailed below. Our
CUDA engine performs the .logsumexp() reduction using an online version of the Log-Sum-Exp
trick – with a running maximum – that guarantees numerical stability with a negligible computational
overhead.

Annealing. In practice, the Sinkhorn loop converges to a set numerical tolerance in
O(maxi,j C(xi, yj) / ε) iterations. To accelerate convergence, a common heuristic is to let the
temperature ε decrease following an exponential annealing schedule [71]. If ∆ is an estimation of
the diameter maxi,j ‖xi − yj‖, ε is a target temperature and nits is a prescribed number of iterations,
we use decreasing values of the temperature:

εn = ∆2 qn with q = (ε/∆2)1/nits (43)
at every iteration n ∈ [[1, nits]] of the Sinkhorn loop. For faster convergence, the dual potentials are
initialized using a closed-form solution of (31) when ε = +∞:

fi =

M∑
j=1

βj C(xi, yj) and gj =

N∑
i=1

αi C(xi, yj) . (44)

Overall, this method usually lets the Sinkhorn loop converge to a satisfying tolerance in 5 to 20
iterations, even for small values of ε.
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1 def sinkhorn_loop_simple(a, x, b, y, eps, nits):
2 """
3 weights, points, weights', points' -> f(x), g(y)
4 (B, N), (B, N, D), (B, M), (B, M, D), -> (B, N), (B, M)
5 """
6 B, N, D = x.shape # Batch size, source points, features
7 _, M, _ = y.shape # Batch size, target points, features
8

9 # Dual variables, (B, N) and (B, M):
10 a, b = a.view(B, N, 1), b.view(B, M, 1)
11 u_x, v_y = torch.ones_like(a), torch.ones_like(b)
12 # Encoding as symbolic tensors:
13 x_i = LazyTensor(x.view(B, N, 1, D)) # (B, N, 1, D)
14 y_j = LazyTensor(y.view(B, 1, M, D)) # (B, 1, M, D)
15

16 # Symbolic cost matrix and Gibbs kernel:
17 C_ij = ((x_i - y_j) ** 2).sum(-1) / 2 # (B, N, M)
18 K_ij = (- C_ij / eps).exp() # (B, N, M)
19

20 # Sinkhorn iterations:
21 for _ in range(nits):
22 u_x = 1 / (K_ij @ (b * v_y)) # (B, N, M) @ (B, M, 1) = (B, N, 1)
23 v_y = 1 / (K_ij.t() @ (a * u_x)) # (B, M, N) @ (B, N, 1) = (B, M, 1)
24

25 f_x, g_y = eps * u_x.log(), eps * v_y.log()
26 return f_x.view(B, N), g_y.view(B, M)
27

28

29 def sinkhorn_loop_stable(a, x, b, y, eps, nits):
30 """
31 weights, points, weights', points' -> f(x), g(y)
32 (B, N), (B, N, D), (B, M), (B, M, D), -> (B, N), (B, M)
33 """
34 B, N, D = x.shape # Batch size, source points, features
35 _, M, _ = y.shape # Batch size, target points, features
36

37 # Dual potentials, (B, N) and (B, M):
38 f_x, g_y = torch.zeros_like(a), torch.zeros_like(b)
39 # Log of the weights, (B, N) and (B, M):
40 a_logs, b_logs = a.log(), b.log()
41

42 # Encoding as symbolic tensors:
43 # Points:
44 x_i = LazyTensor(x.view(B, N, 1, D)) # (B, N, 1, D)
45 y_j = LazyTensor(y.view(B, 1, M, D)) # (B, 1, M, D)
46 # Dual potentials:
47 f_i = LazyTensor(f_x.view(B, N, 1, 1)) # (B, N, 1, 1)
48 g_j = LazyTensor(g_y.view(B, 1, M, 1)) # (B, 1, M, 1)
49 # Log-weights:
50 log_a_i = LazyTensor(a_logs.view(B, N, 1, 1)) # (B, N, 1, 1)
51 log_b_j = LazyTensor(b_logs.view(B, 1, M, 1)) # (B, 1, M, 1)
52

53 # Symbolic cost matrix:
54 C_ij = ((x_i - y_j) ** 2).sum(-1) / 2 # (B, N, M, 1)
55

56 # Symmetric Sinkhorn iterations, written in the log-domain:
57 for _ in range(nits):
58 ft_x = - eps * ((g_j - C_ij) / eps + log_b_j).logsumexp(dim=2).squeeze(-1)
59 gt_y = - eps * ((f_i - C_ij) / eps + log_a_i).logsumexp(dim=1).squeeze(-1)
60 # Use in-place updates to keep a small memory footprint:
61 f_x[:] = (f_x + ft_x) / 2
62 g_y[:] = (g_y + gt_y) / 2
63

64 return f_x, g_y
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Multiscale solvers. Going further, a recent line of work puts the emphasis on multiscale implemen-
tations of the Sinkhorn loop [10, 37, 96]. Following these papers, we use our library to provide a
two-scale solver for the regularized optimal transport problem (31). Its behaviour can be described in
four steps:

1. We compute coarse approximations of the input measures α and β. In practice, we use a
K-means clustering with Nc =

√
N (resp. Mc =

√
M) clusters on the input point clouds

(xi) ∈ RN×D (resp. (yj) ∈ RM×D): each cluster is represented by its centroid xi with total
weight αi (resp. yj with total weight βj). This corresponds to a quantization of the discrete
measures α and β, as:

Nc∑
i=1

αiδxi
'

N∑
i=1

αiδxi
and

Mc∑
j=1

βjδyj '
M∑
j=1

βjδyj (45)

for the weak-? topology, as measured e.g. by the Wasserstein-2 distance. We sort the (N,D)
and (M,D) arrays (xi) and (yj) to ensure that all the clusters are contiguous in memory.

2. We start the annealing descent on the coarse measures. We use the stabilized iterations
of sinkhorn_loop_stable on the symbolic (Nc,Mc) cost matrix C(xi, yj) and update
coarse dual vectors (f i) ∈ RNc , (gj) ∈ RMc .

3. When the blur scale
√
εn goes below the largest diameter of the K-means clusters, we

perform a coarse-to-fine extrapolation step. We use the optimality equations (34-35) to
extrapolate the f i’s and gj’s, supported by the xi’s and yj’s, onto new values (fi) ∈ RN

and (gj) ∈ RM supported by the xi’s and yj’s. As discussed in Section 4, we also compute
a block-sparsity mask on the symbolic (N,M) cost matrix C(xi, yj): following [96], it
corresponds to pruning out pair-wise interactions between clusters such that:

f i + gj < C(xi, yj) − τεn , (46)

where τ is a cutoff parameter that we set to 5, since 1� exp(−5).

4. We perform the last iterations of the stabilized Sinkhorn loop on the full point clouds (xi)
and (yj): these updates correspond to the values of

√
εn that range between the average

cluster diameter and the target blur value
√
ε. We use the block-sparsity mask computed at

step 3 to prune out negligible interactions from the full (N,M) cost matrix C(xi, yj): this is
a GPU-friendly implementation of the kernel truncation trick of [96].

The resulting code is too technical to fit in these supplementary materials: we package and fully
document this solver on our website (www.kernel-operations.io/geomloss) [37, 40].

Benchmarks. As discussed above, our library is well suited to research in optimal transport
theory: simple algorithms and advanced solvers can all be implemented with symbolic LazyTensors.
To showcase the performances of our implementations, we now benchmark several solvers: a
baseline linear solver for the exact transport problem, implemented in C++ on the CPU [13, 42];
a stabilized Sinkhorn loop with 1/ε iterations, implemented using either PyTorch JIT or KeOps;
a stabilized Sinkhorn loop with annealing and 10 iterations, implemented using either PyTorch
JIT or KeOps; a multiscale solver, implemented with KeOps as discussed above. In practice, the
parameters of our solvers ensure that the relative error made on the regularized Wasserstein-2
“distance”

√
2 · OTε(αi, xi, βj , yj) is always smaller than 1%. This level of accuracy is satisfying

for most practical purposes in shape analysis and machine learning.

To illustrate the two main use cases of optimal transport theory in the field, we tackle two separate
problems:

1. A high-precision matching in dimension D = 3. The input point clouds (xi) and (yj) are
sampled from the Stanford dragon and are deformed using random affine transformations.
They are then centered and normalized: we use an estimate ∆ = 2 of the diameter of the
configuration in the annealing descent. The blur scale

√
ε is set to 0.01: we retrieve a

precise transport plan πi,j with (32) that is essentially accurate up to a < 1% tolerance.

31

www.kernel-operations.io/geomloss


2. A low-precision matching in dimension D = 25. The input point clouds (xi) and (yj) are
sampled from the Glove-25 dataset and are deformed using random affine transformations.
They are then centered and normalized: we use an estimate ∆ = 2 of the diameter of the
configuration in the annealing descent. The blur scale

√
ε is set to 0.3: we retrieve a fuzzy

transport plan πi,j with (32) that captures large-scale deformations while being relatively
robust to statistical noise.

Our results are summarized in Table 6 and discussed at the end of the main paper. In practice KeOps
consistently improves the runtimes of optimal transport solvers on the GPU: researchers can now
scale up their methods to large datasets without memory overflows. As predicted by the theory,
multiscale strategies are most useful for large point clouds in low-dimensional spaces (N >100k,
D 6 3), while annealing strategies provide a good deterministic baseline in all the other settings.

Table 6: Scaling up optimal transport to large datasets.

POT PyTorch → Ours PyTorch → Ours Ours
Exact Sinkhorn→ Sinkhorn annealing→ annealing multiscale

N D
√
ε 1/ε its → 1/ε its 10 its → 10 its 10 its

1k 3 .01 121 ms 2,000 ms→ 241 ms 1,960 µs → 82 µs 25.7 ms
10k 3 .01 12.2 s 203 s → 7.65 s 211 ms → 8 ms 26 ms

100k 3 .01 ∞ mem → 645 s mem → 669 ms 230 ms
1M 3 .01 ∞ mem → ∞ mem → 62 s 2.70 s
1k 25 .3 143 ms 2,200 µs → 375 µs 1,960 µs → 360 µs 36.5 ms

10k 25 .3 12.6 s 227 ms → 35 ms 211 ms → 34 ms 101 ms
100k 25 .3 ∞ mem → 3.48 s mem → 3.37 s 3.40 s

1M 25 .3 ∞ mem → 319 s mem → 338 s 294 s

F Structure of the inner KeOps++ engine

This Section provides an overview of the low-level structure of the KeOps engine: more details and
explanations can be found on our website (www.kernel-operations.io).

The compilation stack. As described in Section 4, effective KeOps computations are triggered by
reductions over one of the “symbolic” axes of a LazyTensor, at positions −2 or −3. Calculations
are performed by custom binaries that are generated as required by the engine, and stored on the hard
drive for later use. Under the hood, the formula F of Eq. (1) is encoded as a string of characters that
is attached to the LazyTensor object: this simple descriptor is sent to the C++/CUDA compiler via a
preprocessor macro through the cmake build engine.

In practie, after the compilation step, two dynamic libraries are generated with extension .so on
Unix, .dll on Windows or .dylib on MacOS. The first one contains the C++/CUDA functions that
perform the actual computation on the GPU, whereas the second one makes the interface between the
C++/CUDA code and Python via the PyBind11 library [61]. We note that this second shared object
(the binder) can be changed to fit the requirements of other scripted languages: for instance, our
gnu/R interface relies on the Rcpp [33] framework. Each binary has a unique name, created using
a standard hash function, that identifies the formula F and several other parameters: the Python
version, GPU Id, etc. . . KeOps binaries are ultimately gathered in a cache directory that is listed in
the PYTHON_PATH: they can be imported from Python using the standard import statement.

Building formulas, automatic differentiation. Internally, KeOps encodes formulas as recursively
templated C++ classes: every single mathematical operation that make up our formulas is defined
as a templated struct that takes a sub-formula as an input. The recursion ends when the compiler
encounters a class that corresponds to a variable or a constant, whose value is known. Every KeOps
struct that encodes a mathematical operator comes with two attributes:

1. a forward function that implements the actual computation in C++/CUDA. This piece of code
will be inlined in the final CUDA kernel.
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2. a backward function that encodes a symbolic expression for the gradient (i.e. the adjoint of
the differential), expressed using KeOps recursive templates.

As an example, the element-wise, vector-valued exponential function is encoded with:

1 template < class F >
2 struct Exp : UnaryOp< Exp, F > {
3 // dimension of the output: Exp(F) has the same dimension as F
4 static const int DIM = F::DIM
5

6 // Forward: actual computation, to be inlined inside the Cuda code
7 static DEVICE INLINE void Operation(TYPE *out, TYPE *in) {
8 # pragma unroll
9 for (int k=0; k<DIM; k++) { out[k] = exp(in[k]); }

10 }
11

12 // Backward: templated expression for the adjoint of the differential
13 // operator of Exp w.r.t. the variable V, and applied to GRADIN input
14 // vector: ∇V (Exp(F)).GRADIN = ∇V (F).(Exp(F)×GRADIN)
15 template < class V, class GRADIN >
16 using DiffT = typename F::template DiffT< V, Mult< Exp< F >, GRADIN > >;
17 };

Using similar definitions for other mathematical operations, we can then express a Gaussian matrix-
vector product:

F (x, y, b) =
∑
j

exp(−‖xi − yj‖2) bj (47)

as a sum reduction over the index “j” of the formula:

1 auto F = Scal< Exp< Minus< SqDist< X, Y> > >, B >
2 auto SF = Sum_Reduction< F, 0 > // the 0 flag specifies a reduction over j

In the code above, X, Y and B are special classes that represent data loaders (i.e. the variables that
are fed to the symbolic formula). LazyTensor objects build such templated formulas on their own,
whenever required: end-users only have to deal with our high-level Python syntax.

The templated structure of our inner engine has two main advantages. First, the code for evaluating
the full formula F is built up at compile time, which allows the C++/CUDAcompiler to optimize the
resulting code. Many checks can be performed during the compilation (e.g. with static_assert
expressions) to avoid overheads at run time. Moreover, all loops whose indices are known at compile
time (e.g. to compute the norm of a vector of size D) are unrolled aggressively.

Second, we can use the recursive template mechanics to implement a fully-fledged automatic dif-
ferentiation engine. We recall here that a given KeOps shared object can only compute a single
formula. Consequently, in order to compute the gradient ∇F of a formula F , we need to build new
shared objects to take care of partial derivatives with respect to all the input variables. As in the
forward evaluation, this is done on-the-fly during the call to the Pytorch .backward() or .grad()
methods in a way that is transparent to end-users. For instance, the partial derivative of a Gaussian
matrix-vector product with respect to a variable x, can be computed by adding the symbolic Grad< >
operator in front of the formula SF that encodes the sum reduction of a formula F:

1 auto GSF = Grad< SF, X, E >

Here, the input variable E is the gradient to back-propagate from the outputs. The effect of the
Grad< > operator is then surprisingly simple: instead of injecting the code of the forward function,
the compiler inlines the code contained in the DiffT method – the backward function. The resulting
C++/CUDA function then outputs the chain rule derivative of SF without hassle.

33


	Introduction
	Related work
	Motivation
	Implementation
	Experiments and Applications
	Kernel Methods and Clustering
	Nearest neighbor search with any metric
	Geometric deep learning and geometric primitives
	Easing the development of complex geometric programs

	Conclusion
	Kernel methods
	Clustering
	K-Means: Lloyd's algorithm
	Gaussian mixture models: the EM algorithm

	Dimensionality reduction
	Geometric primitives
	Optimal transport
	Structure of the inner KeOps++ engine

