Fast geometric libraries for vision and data sciences

٠

Jean Feydy Imperial College London, INRIA Paris

21st October, 2021

Who am I?

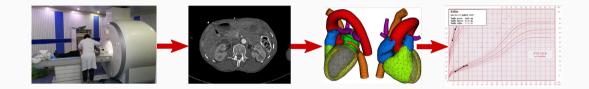
Background in **mathematics** and **data sciences**:

- 2012–2016 ENS Paris, mathematics.
- 2014–2015 M2 mathematics, vision, learning at ENS Cachan.
- 2016–2019 PhD thesis in medical imaging with Alain Trouvé at ENS Cachan.
- 2019–2021 Geometric deep learning with Michael Bronstein at Imperial College.2021+ Medical data analysis in the HeKA INRIA team (Paris).

Close ties with **healthcare**:

- 2015 Image denoising with Siemens Healthcare in Princeton.
- 2019+ MasterClass Al–Imaging, for radiology interns in the University of Paris.
- 2020+ Colloquium on Medical imaging in the AI era at the Paris Brain Institute.

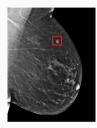
Our motivation: medical data analysis



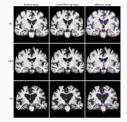
Three main characteristics:

- Heterogeneous data: patient history, images, etc.
- Small stratified samples: 10 1000 patients per group.
- Dealing with **outliers** and the **heavy tails** of our distributions is a priority.

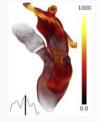
Computational anatomy [CSG19, LSG⁺18, CMN14]



Detect a pattern.



Analyze a variation.



Register a model.

Some characteristics, in the wider context of computer vision research:

- Standard acquisitions, without occlusions.
- Precision work (at millimeter scale).
- Need for **guarantees** of robustness and regularity.

Target. Design models that combine medical **expertise** with modern **datasets**.

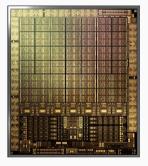
Challenge. The advent of Graphics Processing Units (GPU):

• Incredible value for money:

1 000€ \simeq 1 000 cores \simeq 10¹² operations/s.

• Bottleneck: constraints on register usage.

"User-friendly" Python ecosystem, consolidated around a **small number of key operations**.



7,000 cores in a single GPU.

Solution. Expand the standard toolbox in data sciences to deal with the challenges of the healthcare industry.

Ease the development of **advanced models**, without compromising on numerical performance.

In-depth work, numerical foundations \longrightarrow high-level applications:

- 1. Efficient manipulation of "symbolic" matrices (distances, kernel, etc.).
- 2. Optimal transport: generalized sorting methods.
- 3. Geometric deep learning and biomedical applications.

Future of these tools and clinical perspectives.

1. Symbolic matrices

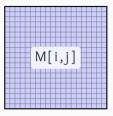
Computing libraries represent most objects as tensors

Context. Constrained **memory accesses** on the GPU:

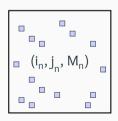
- Long access times to the registers penalize the use of large dense arrays.
- Hard-wired **contiguous** memory accesses penalize the use of **sparse** matrices.

Challenge. In order to reach optimal run times:

- **Restrict** ourselves to operations that are supported by the constructor: convolutions, FFT, etc.
- Develop new routines from scratch in C++/CUDA (FAISS, KPConv...): several months of work.



Dense array



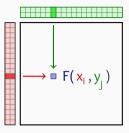
The KeOps library: efficient support for symbolic matrices

Solution. KeOps – www.kernel-operations.io:

- For PyTorch, NumPy, Matlab and R, on CPU and GPU.
- Automatic differentiation.
- Just-in-time **compilation** of **optimized** C++ schemes, triggered for every new **reduction**: sum, min, etc.

```
If the formula "F" is simple (\leq 100 arithmetic operations):
     "100k \times 100k" computation \rightarrow 10ms - 100ms,
        "1M \times 1M" computation \rightarrow 1s – 10s.
```

Hardware ceiling of 10^{12} operations/s. $\times 10$ to $\times 100$ speed-up vs standard GPU implementations for a wide range of problems.



Symbolic matric Formula + data

- Distances d(x_i,y_j).
 Kernel k(x_i,y_i).
- Numerous transforms.

A first example: efficient nearest neighbor search in dimension 50

Create large point clouds using standard PyTorch syntax:

import torch

```
N, M, D = 10**6, 10**6, 50
x = torch.rand(N, 1, D).cuda() # (1M, 1, 50) array
y = torch.rand(1, M, D).cuda() # ( 1, 1M, 50) array
```

Turn dense arrays into symbolic matrices:

from pykeops.torch import LazyTensor x_i, y_j = LazyTensor(x), LazyTensor(y)

Create a large **symbolic matrix** of squared distances:

D_ij = ((x_i - y_j) ** 2).sum(dim=2) # (1M, 1M) symbolic

Use an .argmin() reduction to perform a nearest neighbor query: indices_i = D_ij.argmin(dim=1) # -> standard torch tensor

The KeOps library combines performance with flexibility

Script of the previous slide = efficient nearest neighbor query, on par with the bruteforce CUDA scheme of the FAISS library... And can be used with any metric!

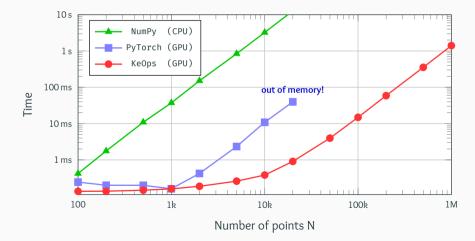
D_ij	= ((x_i - x_j) ** 2).sum(dim=2)	#	Euclidean
M_ij	= (x_i - x_j).abs().sum(dim=2)	#	Manhattan
C_ij	= 1 - (x_i x_j)	#	Cosine
H_ij	= $D_{ij} / (x_{i[,0]} * x_{j[,0]})$	#	Hyperbolic

KeOps supports arbitrary formulas and variables with:

- Reductions: sum, log-sum-exp, K-min, matrix-vector product, etc.
- **Operations:** +, \times , sqrt, exp, neural networks, etc.
- Advanced schemes: batch processing, block sparsity, etc.
- Automatic differentiation: seamless integration with PyTorch.

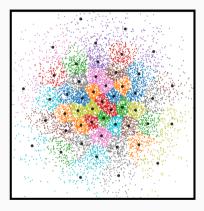
KeOps lets users work with millions of points at a time

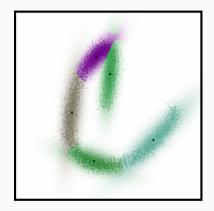
Benchmark of a Gaussian **convolution** between **clouds of N 3D points** on a RTX 2080 Ti GPU.



Applications

KeOps is a good fit for machine learning research



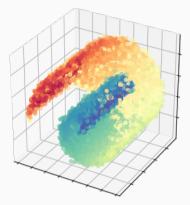


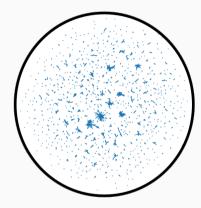
K-Means.

Gaussian Mixture Model.

Use any kernel, metric or formula you like!

KeOps is a good fit for machine learning research





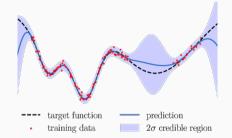
Spectral analysis.

UMAP in hyperbolic space.

Use any kernel, metric or formula you like!

Applications to Kriging, spline, Gaussian process, kernel regression

A standard tool for regression [Lec18]:



Under the hood, solve a kernel linear system:

$$(\lambda \operatorname{Id} + K_{xx}) a = b$$
 i.e. $a \leftarrow (\lambda \operatorname{Id} + K_{xx})^{-1} b$

where $\;\lambda \geqslant 0\;\; {\rm et}\;\; (K_{xx})_{i,j} = k(x_i,x_j)\;$ is a positive definite matrix.

KeOps symbolic tensors $(K_{xx})_{i,j} = k(x_i, x_j)$:

- Can be fed to **standard solvers**: SciPy, GPyTorch, etc.
- GPytorch on the 3DRoad dataset (N = 278k, D = 3): $\label{eq:generalized_states} \begin{array}{c} \textbf{7h avec 8 GPUs} & \rightarrow & 15mn avec 1 GPU. \end{array}$

 Provide a fast backend for research codes: see e.g. Kernel methods through the roof: handling billions of points efficiently, by G. Meanti, L. Carratino, L. Rosasco, A. Rudi (2020).

2. Optimal transport

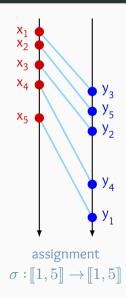
Optimal transport (OT) generalizes sorting to spaces of dimension $\mathsf{D}>1$

Context. If $A = (x_1, ..., x_N)$ and $B = (y_1, ..., y_N)$ are two clouds of N points in \mathbb{R}^D , we define:

$$\mathsf{OT}(\mathbf{A},\mathbf{B}) \;=\; \min_{\sigma \in \mathcal{S}_{\mathsf{N}}}\; \frac{1}{2\mathsf{N}} \sum_{\mathsf{i}=1}^{\mathsf{N}} \| \mathbf{x}_{\boldsymbol{i}} - \mathbf{y}_{\sigma(\boldsymbol{i})} \|^2$$

Generalizes **sorting** to metric spaces. **Linear problem** on the permutation matrix P:

$$\begin{aligned} \mathsf{OT}(\mathsf{A},\mathsf{B}) \ &= \ \min_{\mathsf{P}\in\mathbb{R}^{\mathsf{N}\times\mathsf{N}}} \ \frac{1}{2\mathsf{N}} \sum_{i,j=1}^{\mathsf{N}} \mathsf{P}_{i,j} \cdot \| \, \mathsf{x}_{i} - \mathsf{y}_{j} \|^{2} \,, \\ \text{s.t.} \quad \mathsf{P}_{i,j} \ &\geqslant \ \mathsf{O} \quad \underbrace{\sum_{j} \mathsf{P}_{i,j} \ = \ \mathsf{1}}_{\text{Each source point...}} \ \underbrace{\sum_{i} \mathsf{P}_{i,j} \ = \ \mathsf{1}}_{\text{is transported onto the target.}} \end{aligned}$$



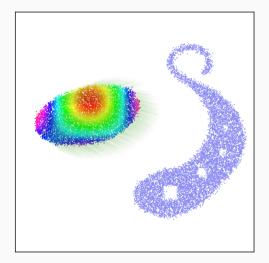
Key properties of this distance "up to permutations"

The Wasserstein distance $\sqrt{OT}(A, B)$ is:

- Symmetric: OT(A, B) = OT(B, A).
- Positive: $OT(A, B) \ge 0$.
- Definite: $OT(A, B) = 0 \iff A = B$.
- Translation-aware: $OT(A, Translate_{\vec{v}}(A)) = \frac{1}{2} \| \vec{v} \|^2$.
- More generally, OT retrieves the unique gradient of a convex function ${\bf T}=\nabla\phi$ that maps A onto B:

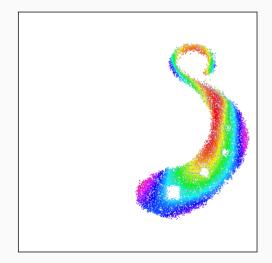
 $\begin{array}{ll} \text{In dimension 1,} & (\mathbf{x}_{i} - \mathbf{x}_{j}) \, \cdot \, (\mathbf{y}_{\sigma(i)} - \mathbf{y}_{\sigma(j)}) & \geqslant \, \mathbf{0} \\ \\ \text{In dimension D,} & \langle \, \mathbf{x}_{i} - \mathbf{x}_{j} \, \ , \, \, \mathbf{T}(\mathbf{x}_{i}) - \mathbf{T}(\mathbf{x}_{j}) \, \rangle_{\mathbb{R}^{D}} \, \geqslant \, \mathbf{0} \, . \end{array}$

 \implies Appealing generalization of an **increasing mapping**.

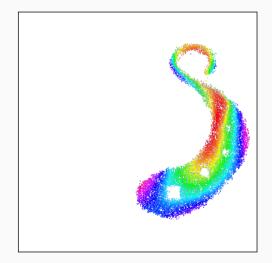


$$t = .50$$

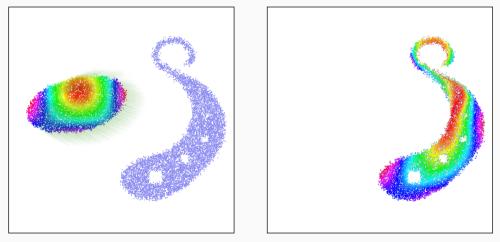
$$t = 1.00$$

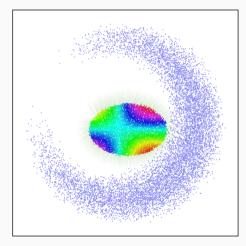


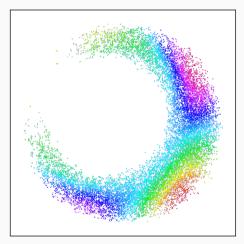
$$t = 5.00$$



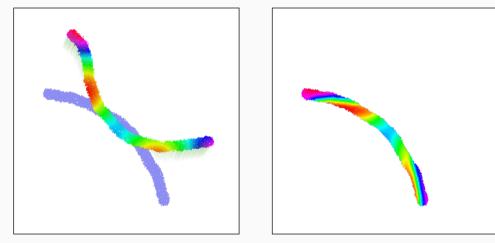
$$t = 10.00$$

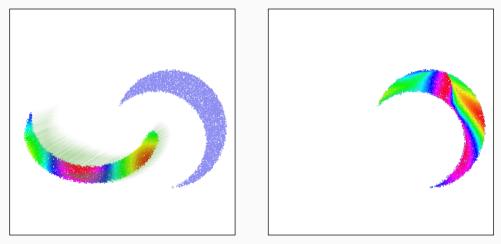




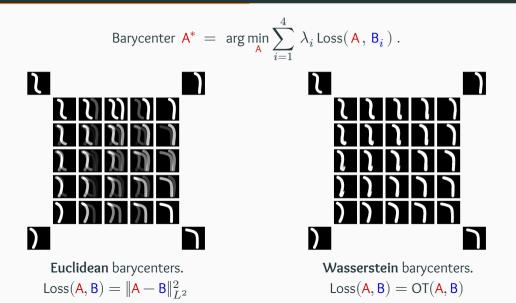


Before





Geometric solutions to least square problems [AC11]

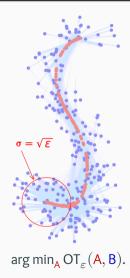


Challenge. Linear assignment: hard to solve in the general case. **Structure** of the distance matrix $\|\mathbf{x}_i - \mathbf{y}_j\|$ \implies **Speed-up** computations.

Fundamental tool: regularized transport $OT_{\varepsilon}(A, B) \simeq OT(A, B) + entropic penalty with strength \varepsilon > 0.$

Smooth and strictly convex approximation: easier to study, most popular Sinkhorn (or "SoftAssign") algorithm.

On the other hand, does not define a distance: $\mathrm{OT}_{\varepsilon}(\mathbf{B},\mathbf{B})>0.$



Theoretical solution: guarantees of robustness to entropic bias

 $\begin{array}{l} \mbox{Solution. Sinkhorn divergences} \ \mbox{are defined with:} \\ \mbox{S}_{\varepsilon}(A,B) = \mbox{OT}_{\varepsilon}(A,B) - \frac{1}{2}\mbox{OT}_{\varepsilon}(A,A) - \frac{1}{2}\mbox{OT}_{\varepsilon}(B,B) \\ \mbox{in order to get a null value when } A = B. \end{array}$

Theorem (S_{ε} is well suited for optimization) For all samples A and B: $S_{\varepsilon}(A, B) \ge 0$ with equality iff. A = B, $A \mapsto S_{\varepsilon}(A, B)$ is convex, differentiable and metrizes the convergence in law.

We generalize this result to positive Radon measures, arbitrary metrics $\|\mathbf{x}_i - \mathbf{y}_i\|$ and to the "unbalanced" setting.

Key dates for discrete optimal transport with N points:

- [Kan42]: Dual problem of Kantorovitch.
- [Kuh55]: Hungarian methods in $O(N^3)$.
- [Ber79]: Auction algorithm in $O(N^2)$.
- [KY94]: SoftAssign = Sinkhorn + simulated annealing, in $O(N^2)$.
- [GRL⁺98, CR00]: Robust Point Matching = Sinkhorn as a loss.
- [Cut13]: Start of the GPU era.
- + [Mér11, Lév15, Sch19]: multi-scale solvers in $O({\rm N}\log{\rm N}).$
- Solution, today: Multiscale Sinkhorn algorithm, on the GPU.

 \Longrightarrow Generalized $\textbf{QuickSort}\,$ algorithm.

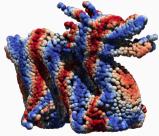
Scaling up optimal transport to anatomical data

Progresses of the last decade add up to a $\times 100$ - $\times 1000$ acceleration:

Sinkhorn GPU $\xrightarrow{\times 10}$ + KeOps $\xrightarrow{\times 10}$ + Annealing $\xrightarrow{\times 10}$ + Multi-scale

With a precision of 1%, on a modern gaming GPU:

pip install geomloss + modern GPU (1000€)



10k points in 30-50ms

100k points in 100-200ms

3. Geometric deep learning

Design task-specific trainable models

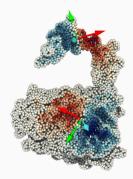
Context. Trainable models on **non-Euclidean domains** (point clouds, surfaces, graphs, etc.), beyond 2D/3D images.

Challenge. In spite of growing interest in the industry, these models still **lack support** on the numerical side. C++/CUDA is (often) required to reach top performance.

Solution. Using KeOps, with a few lines of Python:

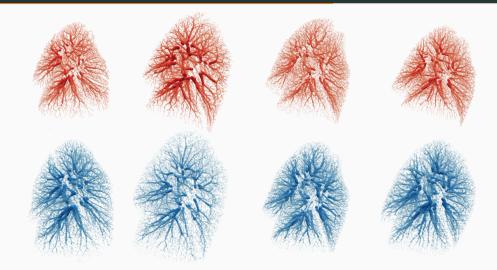
- Local interactions: K-nearest neighbors.
- Global interactions: generalized convolutions.

Modelling **freedom** \implies **Domain-specific** priors.



Quasi-geodesic convolution on a protein surface.

Lung registration "Exhale – Inhale"



Complex deformations, high **resolution** (50k–300k points), high **accuracy** (< 1mm).

We combine:

- 1. Global pre-alignment:
- 2. **Deep prediction** "at centimeter scale":
- 3. Fine-tuning "at millimeter scale":

OT + affine deformation. multi-scale neural network + diffeomorphism.

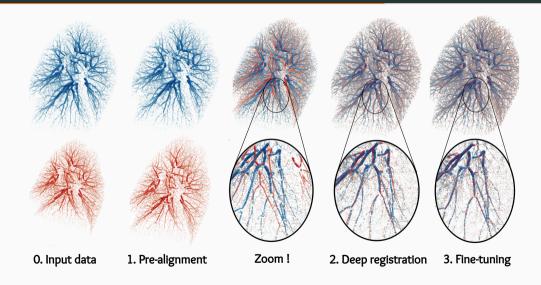
OT + spline regularization.

This **pragmatic** method:

- Is easy to train on synthetic data.
- Scales up to high-resolution: 100k points in 1s.
- Excellent results: KITTI (outdoors scans) and DirLab (lungs).

Accurate point cloud registration with **robust** optimal transport, Shen, Feydy et al. NeurIPS 2021, on ArXiv next week.

Three-steps registration



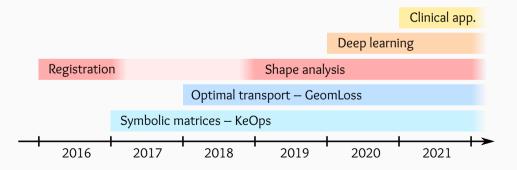
Conclusion

Key points

- Symbolic matrices are to geometric ML what
 - sparse matrices are to graph processing:
 - \longrightarrow KeOps: **x30 speed-up** vs. PyTorch, TF et JAX.
 - $\longrightarrow~$ Useful in a wide range of settings.
- Optimal Transport = generalized sorting :
 - \longrightarrow Geometric gradients.
 - \longrightarrow Super-fast $O(N \log N)$ solvers.
- These tools open **new paths** for geometers and statisticians:
 - \longrightarrow GPUs are more **versatile** than you think.

Two major evolutions:

- "Big" geometric problem: N > 10k \longrightarrow N > 1M.
- Optimal transport: linear problem + generalized quicksort.



Genuine team work

Alain Trouvé

Thibault Séjourné

F.-X. Vialard

Gabriel Peyré

Benjamin Charlier

Joan Glaunès

Freyr Sverrisson

Shen Zhengyang

+ Marc Niethammer, Bruno Correia, Michael Bronstein...

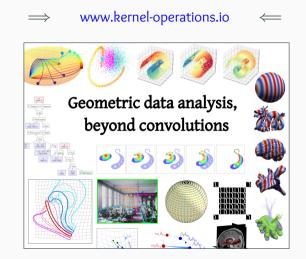
KeOps and GeomLoss are:

- Fast : 10 to 1,000 speedup vs. standard GPU implementations.
- Memory-efficient: O(N), not $O(N^2)$.
- Versatile, with a transparent interface: freedom!
- Powerful and well-documented: research-friendly.
- Slow with large vectors of dimension D > 100.

Coming soon:

- ightarrow Approximation strategies (Nyström, etc.) in KeOps.
- $\rightarrow\,$ Wasserstein <code>barycenters</code> and <code>grid</code> <code>images</code> in GeomLoss.

Documentation and tutorials are available online



www.jeanfeydy.com/geometric_data_analysis.pdf

References

M. Agueh and G. Carlier.

Barycenters in the Wasserstein space.

SIAM Journal on Mathematical Analysis, 43(2):904–924, 2011.

Dimitri P Bertsekas.

A distributed algorithm for the assignment problem.

Lab. for Information and Decision Systems Working Paper, M.I.T., Cambridge, MA, 1979.

References ii

Christophe Chnafa, Simon Mendez, and Franck Nicoud.

Image-based large-eddy simulation in a realistic left heart.

Computers & Fluids, 94:173–187, 2014.

📔 Haili Chui and Anand Rangarajan.

A new algorithm for non-rigid point matching.

In Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on, volume 2, pages 44–51. IEEE, 2000.

References iii

Adam Conner-Simons and Rachel Gordon.

Using ai to predict breast cancer and personalize care.

http://news.mit.edu/2019/using-ai-predict-breast-cancer-and-personalize-care-0507, 2019.

MIT CSAIL.

📔 Marco Cuturi.

Sinkhorn distances: Lightspeed computation of optimal transport.

In Advances in Neural Information Processing Systems, pages 2292–2300, 2013.

References iv

Steven Gold, Anand Rangarajan, Chien-Ping Lu, Suguna Pappu, and Eric Mjolsness. New algorithms for 2d and 3d point matching: Pose estimation and correspondence.

Pattern recognition, 31(8):1019–1031, 1998.

Leonid V Kantorovich.

On the translocation of masses.

In Dokl. Akad. Nauk. USSR (NS), volume 37, pages 199–201, 1942.

📔 Harold W Kuhn.

The Hungarian method for the assignment problem.

Naval research logistics quarterly, 2(1-2):83–97, 1955.

Jeffrey J Kosowsky and Alan L Yuille.

The invisible hand algorithm: Solving the assignment problem with statistical physics.

Neural networks, 7(3):477-490, 1994.

📔 Florent Leclercq.

Bayesian optimization for likelihood-free cosmological inference.

Physical Review D, 98(6):063511, 2018.

📄 Bruno Lévy.

A numerical algorithm for l2 semi-discrete optimal transport in 3d.

ESAIM: Mathematical Modelling and Numerical Analysis, 49(6):1693–1715, 2015.

Christian Ledig, Andreas Schuh, Ricardo Guerrero, Rolf A Heckemann, and Daniel Rueckert.

Structural brain imaging in Alzheimer's disease and mild cognitive impairment: biomarker analysis and shared morphometry database.

Scientific reports, 8(1):11258, 2018.

🔋 Quentin Mérigot.

A multiscale approach to optimal transport.

In Computer Graphics Forum, volume 30, pages 1583–1592. Wiley Online Library, 2011.

Bernhard Schmitzer.

Stabilized sparse scaling algorithms for entropy regularized transport problems.

SIAM Journal on Scientific Computing, 41(3):A1443–A1481, 2019.