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The medical imaging pipeline [Ptr19, EPW+11]

Sensor data

Signal processing

Raw image

Computational anatomy

High-level description

Statistics

Valuable information
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Computational anatomy [CSG19, LSG+18, CMN14]

Three main problems:

Spot patterns Analyze variations Fit models
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2010–2020: the deep learning revolution

Wavelet/Radiomics-like architectures + data-driven optimization

=⇒ Convolutional Neural Networks.

A revolution for feature detection and texturemodels.

Segmentation with U-nets [RFB15]:

→

→
Architecture Input Output
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Geometric problems are becoming increasingly relevant

Geometric questions on segmented shapes:

• Is this heart beating all right?

• How should we reconstruct thismandible?

• Has this brain grown or shrunk since last year?

• Can we link these anatomical changes to other signals?

Over the last 30 years, robust methods have been designed

to answer these questions.

Today, we want to improve them with data-driven insights.

This is challenging.

To replicate the deep learning revolution in this field,

we need to revamp our numerical toolbox.
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Motivations

Geometric data analysis, beyond convolutions:

• Focus on geometric data:

segmentation maps, point clouds, surface meshes, etc.

• Focus on geometric methods:

K-nearest neighbors, kernel methods, optimal transport, etc.

• Provide new computational routines:

expand the toolbox for data sciences.

We usually work with 103-106 points in dimension 2 to 10.

We focus on geometry and speed.
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Outline of the talk

Today, we will talk about:

1. Fast geometry with symbolic matrices.

2. Scalable optimal transport.

3. Applications and references.
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Fast geometry with symbolic matrices.

Benjamin Charlier Joan Glaunès



Deep learning frameworks: unlocking GPUs for research

TensorFlow and PyTorch combine:

+ Array-centric Python interface.

+ CPU and GPU backends.

+ Automatic differentiation engine.

+ Excellent support for imaging (convolutions) and linear algebra.

=⇒ Ideally suited for research.

7



Efficient algorithms still rely on C++ foundations

Explicit C++/CUDA implementations with a Python interface for:

• Linear algebra (cuBLAS).

• Convolutions (cuDNN).

• Fourier (cuFFT) and wavelet transforms (Kymatio).

Geometric algorithms do not benefit from the same level of

integration. Researchers can either:

• Work directly in C++/CUDA – cumbersome for data sciences.

• Rely on sparse matrices and graphs with small neighborhoods.

• Rely on explicit distance matrices.

RuntimeError: cuda runtime error (2) : out of memory at

/opt/conda/.../THCStorage.cu:66
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We provide efficient support for distance-like matrices

M[ i , j ] (in, jn,Mn) F( xi , yj )

Dense matrix Sparse matrix Symbolic matrix

Coefficients only Coordinates + coeffs Formula + data

=⇒ pip install pykeops ⇐=
“KErnel OPerationS”
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KeOps works with PyTorch, NumPy, Matlab and R

# Large point cloud in R50:
import torch
N, D = 10**6, 50
x = torch.rand(N, D).cuda() # (1M, 50) array

# Compute the nearest neighbor of every point:
from pykeops.torch import LazyTensor
x_i = LazyTensor(x.view(N, 1, D)) # x_i is a "column"
x_j = LazyTensor(x.view(1, N, D)) # x_j is a "line"
D_ij = ((x_i - x_j)**2).sum(dim=2) # (N, N) symbolic
indices_i = D_ij.argmin(dim=1) # -> (N,) dense

On par with reference C++/CUDA libraries (FAISS-GPU).
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Combining performance and flexibility

We can work with arbitrary formulas:

D_ij = ((x_i - x_j) ** 2).sum(dim=2) # Euclidean
M_ij = (x_i - x_j).abs().sum(dim=2) # Manhattan
C_ij = 1 - (x_i | x_j) # Cosine
H_ij = D_ij / (x_i[...,0] * x_j[...,0]) # Hyperbolic

=⇒×200 acceleration for UMAP on hyperbolic spaces.

KeOps supports:

• Reductions: sum, log-sum-exp, K-min, matrix-vector product, etc.

• Operations: +,×, sqrt, exp, neural networks, etc.
• Advanced schemes: block-wise sparsity, numerical stability, etc.

• Automatic differentiation: seamless integration with PyTorch.
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Scaling up to large datasets

ai ←
∑M

j=1 exp(−‖xi − yj‖2/2σ2)︸ ︷︷ ︸
k(xi,yj)

bj, ∀i ∈ [[1,N]]

102 103 104 105 106

10−3

10−2

10−1

100

101

out of memory!

Number of points N = M

Ti
m
e
(s
ec
)

Gaussian kernel product in 3D (RTX 2080 Ti GPU)

NumPy (CPU)

PyTorch (GPU)

KeOps (GPU)
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The KeOps library

+ Cross-platform: C++, R, Matlab, NumPy and PyTorch.

+ Versatile: many operations, variables, reductions.

+ Efficient: O(N)memory, competitive runtimes.

+ Powerful: automatic differentiation, block-sparsity, etc.

+ Transparent: interface with SciPy, GPytorch, etc.

+ Fully documented:

www.kernel-operations.io

→ Kriging, splines, Gaussian processes, kernelmethods.

→ Geometry processing, geometric deep learning.

(More illustrations at the end of the talk!)
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Computational optimal transport

Thibault Séjourné F.-X. Vialard Gabriel Peyré



We need robust loss functions for shape analysis

Working with point clouds is now easier than ever.

We can protoype new geometric algorithms in minutes.

But how should wemeasure success and errors?

=⇒We must develop geometric loss functions

to compute distances between shapes.

High-quality gradients will improve the robustness

of registration or training algorithms

and allow us to focus on our models.
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Life is easy when you have landmarks…

Anatomical landmarks from A morphometric approach for the analysis of

body shape in bluefin tuna, Addis et al., 2009.
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Unfortunately, medical data is often weakly labeled [EPW+11]

Surface meshes Segmentation masks
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Encoding unlabeled shapes as measures

Let’s enforce sampling invariance:

A −→ α =
N∑

i=1

αiδxi , B −→ β =
M∑
j=1

βjδyj .

→ →
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A baseline setting: density registration

α =
N∑

i=1

αiδxi , β =
M∑
j=1

βjδyj .

N∑
i=1

αi = 1 =
M∑
j=1

βj

Display vi = − 1
αi
∇xiLoss(α, β).

Seamless extensions to:

•
∑

i αi 6=
∑

j βj, outliers [CPSV18],

• curves and surfaces [KCC17],

• variable weights αi.
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TheWasserstein distance

We need clean gradients, without artifacts.

Simple toy example in 1D :

source
δx1 δx2 δx3 δx4 δx5

target
δy3 δy5 δy2 δy4 δy1

assignment

σ∗ : [[1, 5]]→ [[1, 5]]

OT(α, β) =
1

2N

N∑
i=1

|xi − yσ∗(i)|2

= min
σ∈SN

1

2N

N∑
i=1

|xi − yσ(i)|2
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Optimal transport generalizes sorting to D > 1

Minimize over N-by-Mmatrices

(transport plans) π :

OT(α, β) = min
π

∑
i,j

πi,j · 12 |xi − yj|2︸ ︷︷ ︸
transport cost

subject to πi,j > 0,∑
j

πi,j = αi,
∑
i

πi,j = βj.
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Gradient flow as a toy registration: xi ← xi − δt 1
αi
∇xiOT(α, β)

t = .00
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Gradient flow as a toy registration: xi ← xi − δt 1
αi
∇xiOT(α, β)

t = 1.00
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Gradient flow as a toy registration: xi ← xi − δt 1
αi
∇xiOT(α, β)

t = 5.00
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Gradient flow as a toy registration: xi ← xi − δt 1
αi
∇xiOT(α, β)

t = 10.00
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How should we solve the OT problem?

Key dates for discrete optimal transport with N points:

• [Kan42]: Dual problem.

• [Kuh55]: Hungarianmethod in O(N3).

• [Ber79]: Auction algorithm in O(N2).

• [KY94]: SoftAssign = Sinkhorn + annealing, in O(N2).

• [GRL+98, CR00]: Robust Point Matching = Sinkhorn as a loss.

• [Cut13]: Start of the GPU era.

• [Mér11, Lév15, Sch19]: Multiscale solvers in O(N log N).

• Today: Multiscale Sinkhorn algorithm, on the GPU.

=⇒ Generalized QuickSort algorithm.
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Scaling up optimal transport to anatomical data

These progresses add up to a×100 -×1000 acceleration:

Sinkhorn GPU
×10−−→ + KeOps

×10−−→ + Annealing
×10−−→ + Multiscale

With a precision of 1%, on a modern gaming GPU:

10k points in 30-50ms 100k points in 100-200ms
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Geometric Loss functions for PyTorch

Our website: www.kernel-operations.io/geomloss

=⇒ pip install geomloss ⇐=

# Large point clouds in [0, 1]3

import torch
x = torch.rand(100000, 3, requires_grad=True).cuda()
y = torch.rand(200000, 3).cuda()

# Define a Wasserstein loss between sampled measures
from geomloss import SamplesLoss
loss = SamplesLoss(loss="sinkhorn", p=2)
L = loss(x, y) # By default, use constant weights

Soon: efficient support for bitmaps,meshes and generic metrics.
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Affordable geometric interpolation [AC11]

Barycenter α∗ = argmin
α

N∑
i=1

λi Loss(α , βi ) .

Linear barycenters Wasserstein barycenters

Loss(α, β) = ‖α− β‖2
L2

Loss(α, β) = OT(α, β)

25



In medical imaging: fast interpolation between “simple” shapes

Knee caps White matter bundles
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A global and geometric loss function

A high-quality gradient…

But no preservation of topology!
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Optimal transport = cheap’n easy registration? Beware!

Before After

=⇒ Guaranteeing the preservation of topology ismuch harder:

see Chapter 5 of my PhD thesis.
28



Applications



Overview

Main motivation: make shape analysis easy.

Working with shapes ought to be as simple as dealing with vectors.

Two modern and robust tools to unlock research in the field:

+ Symbolic matrices: fast and versatile.

+ Geometric Loss functions: high-quality gradients.

=⇒ Very useful outside of medical imaging too!
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KeOps is a good fit for machine learning research

K-Means. Gaussian Mixture Model.

Use any kernel, metric or formula you like!

=⇒More tutorials coming up in October.
30



KeOps is a good fit for machine learning research

Spectral analysis. UMAP in hyperbolic space.

Use any kernel, metric or formula you like!

=⇒More tutorials coming up in October.
31



KeOps lets you focus on your models, results and theorems

Some applications to dynamical systems [DM08, DFMAT17]

and statistics [CDF19] with A. Diez, G. Clarté and P. Degond:

3D Vicsek model with orientation, 2D Vicsek model on the torus,

interactive demo with 2k flyers. in real-time with 100k swimmers.
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KeOps lets you focus on your models, results and theorems

=⇒ Scale up tomillions/billions of agents with Python scripts.

Packing problem in 2D Collective Monte Carlo sampling

with 10k repulsive balls. on the hyperbolic Poincaré disk.
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Applications to Kriging, spline, Gaussian process, kernel regression

A standard tool for regression [Lec18]:

Under the hood, solve a kernel linear system:

(λ Id+ Kxx) a = b i.e. a ← (λ Id+ Kxx)
−1b

where λ > 0 and (Kxx)i,j = k(xi, xj) is a positive definite matrix.

34



Applications to Kriging, spline, Gaussian process, kernel regression

KeOps symbolic tensors:

• Can be fed to standard solvers: SciPy, GPytorch, etc.

• GPytorch on the 3DRoad dataset (N = 278k, D = 3):

7h with 8 GPUs → 15mn with 1 GPU.

• Provide a fast backend for research codes: see e.g.

Kernel methods through the roof: handling billions of points

efficiently, by G. Meanti, L. Carratino, L. Rosasco, A. Rudi (2020).
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My first motivation: computational anatomy

Fast OT-based registration Diffeomorphic and spline registration

with Samuel Joutard, Xu Hao e.g. Deformetrica LDDMM software

and Alistair Young from KCL. with the Aramis Inria team.
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Geometric deep learning w. Freyr Sverrisson and Michael Bronstein

Data-driven geometric methods on point clouds:

+ Fast K-NN search: local interactions.

+ Fast N-by-N computations: global interactions.

+ Heterogeneous batches, Octree-like pruning.

Mean curvature at all scales. Tangent convolutions.
37



Future improvements

KeOps and GeomLoss are:

+ Fast: ×10 -×1,000 speedup vs. naive GPU implementations.

+ Memory-efficient: O(N), not O(N2).

+ Versatile, with a transparent interface: freedom!

+ Powerful and well-documented: research-friendly.

− Slow with large vectors of dimension D > 50.

Christmas 2020: fix register spilling, add support for Tensor cores.

→ Dramatic speed-ups when 16 6 D 6 1,000.

→ Applications to NLP: attention layers, Word Mover’s Distance.
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An ongoing research project

Roadmap for KeOps + GeomLoss:

2017–18 Proof of concept with conference papers, online codes.

Get first feedback from the community.

2019–20 Stable library with solid theorems, a well-documented API.

KeOps backends for high-level packages.

2020–22 Mature library with focused application papers, full tutorials.

Works out-of-the-box for students and engineers.

2022+ A standard toolbox, with genuine clinical applications?

That’s the target!
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Conclusion



Key points

• Symbolic matrices are key to performance:

−→ KeOps, x30 speed-up vs. PyTorch and TF.

−→ Useful in a wide range of settings.

• Optimal Transport = generalized sorting:

−→ Geometric gradients.

−→ Super-fast O(N log N) solvers.

• Going forward, we must develop topology-aware,

data-driven, efficient yet robust shape models.

This is challenging, but we finally have the right tools for the job.
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Genuine team work

Alain Trouvé Thibault Séjourné F.-X. Vialard Gabriel Peyré

Benjamin Charlier Joan Glaunès Pierre Roussillon Pietro Gori
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Promoting cross-field interactions
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Promoting cross-field interactions
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Reaching out to students and engineers is a priority

Online documentation:

=⇒ www.kernel-operations.io ⇐=

PhD thesis, written as an introduction to the field:

Geometric data analysis, beyond convolutions

www.jeanfeydy.com/geometric_data_analysis.pdf
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Thank you for your attention.

Any questions?
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