Artificial "Neural Networks"

The questions to ask

Jean Feydy Harvey Cushing symposium, Paris – June 11th, 2019

Écoles Normales Supérieures de Paris et Paris-Saclay

Jean Feydy (2016-2019) :

- PhD student with Alain Trouvé, ENS Cachan, Computational anatomy.
- Teaching assistant for Gabriel Peyré, M2 MVA and ENS Paris, Mathematical foundations of data sciences.
- Son of Antoine Feydy, PUPH at the Paris-Cochin hospital, Specialist of **musculoskeletal imaging**.

Neural networks?

Today

Neural networks?

A generalization of **linear regression** to complex models.

Neural networks? A generalization of **linear regression** to complex models.

Does it work? Usually, **no, it doesn't**.

Neural networks? A generalization of **linear regression** to complex models.

Does it work? Usually, **no, it doesn't**.

However, this idea now allows us to implement excellent **feature detectors**.

Neural networks? A generalization of **linear regression** to complex models.

Does it work? Usually, **no, it doesn't.** However, this idea now allows us to implement excellent **feature detectors.**

As physicians, how can you look at these methods with a **critical eye**?

What can we see on a medical image?

1. Texture

1. Texture 2. Anatomy

1. Texture 2. Anatomy

1. Texture

2. Anatomy

3. Function

Each level of analysis can be **modeled** by relying on the previous one.

1. Texture2. Anatomy3. Function

Each level of analysis can be **modeled** by relying on the previous one.

Let's discover the most fundamental of all imaging theories: Texture analysis through **multi-scale filtering**.

Convolution (i.e. weighted average of the neighboring pixels) : Cheap generalization of the **product** " $a \cdot x$ ", parameterized by the coefficients of a **small filter** φ .

x

 $\varphi \star \mathbf{X}$

Convolution (i.e. weighted average of the neighboring pixels) : Cheap generalization of the **product** " $a \cdot x$ ", parameterized by the coefficients of a **small filter** φ .

 φ

 \star

x

 $\varphi \star \mathbf{X}$

Convolution (i.e. weighted average of the neighboring pixels) : Cheap generalization of the **product** " $a \cdot x$ ", parameterized by the coefficients of a **small filter** φ .

 \star

 φ

x

 $\varphi \star \mathbf{X}$

Convolution (i.e. weighted average of the neighboring pixels) : Cheap generalization of the **product** " $a \cdot x$ ", parameterized by the coefficients of a **small filter** φ .

 $\varphi \star \mathbf{X}$

 φ

Convolution (i.e. weighted average of the neighboring pixels) : Cheap generalization of the **product** " $a \cdot x$ ", parameterized by the coefficients of a **small filter** φ .

x

Convolution (i.e. weighted average of the neighboring pixels) : Cheap generalization of the **product** " $a \cdot x$ ", parameterized by the coefficients of a **small filter** φ .

 $\varphi \star \mathbf{X}$

Convolution (i.e. weighted average of the neighboring pixels) : Cheap generalization of the **product** " $a \cdot x$ ", parameterized by the coefficients of a **small filter** φ .

 φ

x

 $\varphi \star \mathbf{X}$

Convolution (i.e. weighted average of the neighboring pixels) : Cheap generalization of the **product** " $a \cdot x$ ", parameterized by the coefficients of a **small filter** φ .

 $\varphi \star \mathbf{X}$

 \star

Multi-scale prior on images

Wavelet theory (1990~2010; Meyer, Mallat, Daubechies...): Small filters + cascading zoom-out operations [Mal16]:

Multi-scale prior on images

Wavelet theory (1990~2010; Meyer, Mallat, Daubechies...): Small filters + cascading zoom-out operations [Mal16]:

Multi-scale prior on images

Wavelet theory (1990~2010; Meyer, Mallat, Daubechies...): Small filters + cascading zoom-out operations [Mal16]:

 \implies JPEG2000 format, standard of the movie industry.
That's it for classical models. What about neural networks?

We have:

• A database $\{(x_1 \rightarrow y_1), (x_2 \rightarrow y_2), \dots\}.$

We have:

- A database $\{(x_1 \rightarrow y_1), (x_2 \rightarrow y_2), \dots\}.$
- A model

We have:

- A database $\{(x_1 \rightarrow y_1), (x_2 \rightarrow y_2), \dots\}.$
- A model

We have:

- A database $\{(x_1 \rightarrow y_1), (x_2 \rightarrow y_2), \ldots\}.$
- A model

Let's find, step by step, a value w_{optimal} of the parameters that minimizes the average error on the predictions.

• Generalization of the **linear regression** to arbitrary models.

- Generalization of the **linear regression** to arbitrary models.
- Introduces intermediate variables and bendings.

- Generalization of the linear regression to arbitrary models.
- Introduces intermediate variables and bendings.
- **Naive** training procedure (flexible rod + springs).

- Generalization of the linear regression to arbitrary models.
- Introduces intermediate variables and bendings.
- **Naive** training procedure (flexible rod + springs).

- Generalization of the linear regression to arbitrary models.
- Introduces intermediate variables and bendings.
- **Naive** training procedure (flexible rod + springs).

Generic neural network

 $\simeq~$ Interpolation between the samples of the database.

- Generalization of the linear regression to arbitrary models.
- Introduces intermediate variables and bendings.
- **Naive** training procedure (flexible rod + springs).

Generic neural network

 $\simeq~$ Interpolation between the samples of the database.

Is it good enough?

 $\begin{array}{c} 1 \text{ number} \\ \rightarrow 5 \text{ samples} \end{array}$

Medical imaging \neq generic Big Data problem

Medical imaging \neq generic Big Data problem

Medical imaging \neq generic Big Data problem

The set of all 2D/3D images is **way too large** to be sampled with a satisfying accuracy.

In medical imaging, a good model $F(\mathbf{w}; x) \simeq y$ should:

Encode a sensible prior on the data

Can I understand a heart MRI as a deformed template?

Encode a sensible prior on the data

Can I understand a heart MRI as a deformed template?

Put constraints on the decision function,

Thus allowing us to extrapolate **outside** of the training database.

Encode a sensible prior on the data

Can I understand a heart MRI as a deformed template?

Put constraints on the decision function,

Thus allowing us to extrapolate **outside** of the training database.

Rely on **cheap, elementary operations**, To scale up to 3D/4D volumes.
Encode a sensible prior on the data

Can I understand a heart MRI as a deformed template?

Put constraints on the decision function,

Thus allowing us to extrapolate **outside** of the training database.

Rely on **cheap, elementary operations**, To scale up to 3D/4D volumes.

 \implies Let's combine "regression" with "JPEG2000" !

Analysis through multi-scale filtering : \implies Convolutional Neural Networks

Classical signal processing [Dam] :

Modern signal processing [PMC11] :

JPEG2000 relies on a model $F(\mathbf{w}; \mathbf{x}) \simeq \mathbf{y}$ that is:

• Computationally cheap.

JPEG2000 relies on a model $F(\mathbf{w}; \mathbf{x}) \simeq \mathbf{y}$ that is:

- Computationally cheap.
- Constraining

JPEG2000 relies on a model $F(\mathbf{w}; \mathbf{x}) \simeq \mathbf{y}$ that is:

- Computationally cheap.
- Constraining
- Encodes a **multi-scale** prior on natural images.

JPEG2000 relies on a model $F(\mathbf{w}; \mathbf{x}) \simeq \mathbf{y}$ that is:

- Computationally cheap.
- Constraining
- Encodes a **multi-scale** prior on natural images.

JPEG2000 relies on a model $F(\mathbf{w}; \mathbf{x}) \simeq \mathbf{y}$ that is:

- Computationally cheap.
- Constraining
- Encodes a **multi-scale** prior on natural images.

By tuning its parameters on a labeled database, we get a CNN \simeq problem-dependent "JPEG2020".

The dreamed application: image classification

Looking at CNN(x) = [$\mu(x)$, m(x), M(x)], can we **separate** seagulls from pandas?

The dreamed application: image classification

Looking at CNN(x) = [$\mu(x)$, m(x), M(x)], can we **separate** seagulls from pandas?

What researchers have in mind [WZTF]:

CNNs perform feature detection, nothing more, nothing less [NYC15]:

CNNs perform feature detection, nothing more, nothing less [NYC15]:

« $\mu(\mathbf{x})$ is reliable ; $M(\mathbf{x})$ really isn't. »

CNNs perform feature detection, nothing more, nothing less [NYC15]:

« $\mu(x)$ is reliable ; M(x) really isn't. »

CNNs perform feature detection, nothing more, nothing less [NYC15]:

« $\mu(x)$ is reliable ; M(x) really isn't. »

CNNs perform feature detection, nothing more, nothing less [NYC15]:

« $\mu(\mathbf{x})$ is reliable ; $M(\mathbf{x})$ really isn't. »

Unfortunately : **structured** anatomical models are **way** more expensive. (that's my job...)

Conclusion

Old ideas, fancy words

As we've seen :

Old ideas, fancy words

As we've seen :

Multi-layer perceptron	\iff	Neural network

Regression on a multi-resolution bank of filters

 \iff

Deep learning
<u>Old id</u>eas, fancy words

As we've seen :

Regression on a multi-resolution bank of filters

Old ideas, fancy words

As we've seen :

Regression on a multi-resolution bank of filters

Neural network

Deep learning

The Deep Learning revolution is all about:

• Artificial intelligence.

The Deep Learning revolution is all about:

- Artificial intelligence.
- The first convincing model for **texture**.

The Deep Learning revolution is all about:

- Artificial intelligence.
- The first convincing model for texture.
- The development of **high-level software tools** that allow us to **tune the parameters** of our models TensorFlow, PyTorch...

The Deep Learning revolution is all about:

- Artificial intelligence.
- The first convincing model for texture.
- The development of **high-level software tools** that allow us to **tune the parameters** of our models TensorFlow, PyTorch...

The Deep Learning revolution is all about:

- Artificial intelligence.
- The first convincing model for **texture**.
- The development of **high-level software tools** that allow us to **tune the parameters** of our models TensorFlow, PyTorch...

An image processing software **always** relies on a **simplistic model** of the data.

The Deep Learning revolution is all about:

- Artificial intelligence.
- The first convincing model for **texture**.
- The development of **high-level software tools** that allow us to **tune the parameters** of our models TensorFlow, PyTorch...

An image processing software **always** relies on a **simplistic model** of the data.

There is no miracle.

When facing an "AI" product :

• « Show me what doesn't work. »

When facing an "AI" product :

- « Show me what doesn't work. »
- « Can you **explain** this error to me? »

When facing an "AI" product :

- « Show me what doesn't work. »
- « Can you explain this error to me? »
- "More data" is not going to solve problems automagically.

When facing an "AI" product :

- « Show me what doesn't work. »
- « Can you explain this error to me? »
- "More data" is not going to solve problems automagically.

When facing an "AI" product :

- « Show me what doesn't work. »
- « Can you explain this error to me? »
- "More data" is not going to solve problems automagically.

Going further :

Cours de Sciences des données au Collège de France,

www.college-de-france.fr/site/stephane-mallat/

Jetez un œil à la leçon inaugurale, très accessible !

AI+Radiology MasterClass

sites.google.com/view/masterclassiaimagerie/home

My notebooks are available: www.math.ens.fr/~feydy/Teaching/

Thank you for your attention.

Any questions ?

References i

Jpeg 2000 — wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/JPEG_2000. Accessed: 2018-05-10.

Olivier Ecabert, Jochen Peters, and Matthew Walker.
Segmentation of the heart and great vessels in ct images using a model-based adaptation framework.

Medical Image Analysis, (15):863–876, 2011.

Stéphane Mallat.

Understanding deep convolutional networks.

Phil. Trans. R. Soc. A, 374(2065):20150203, 2016.

📔 Tomaso Mansi.

A statistical model for quantification and prediction of cardiac remodelling: Application to tetralogy of fallot.

IEEE transactions on medical imaging, 2011.

Yaroslav Nikulin and Roman Novak. **Exploring the neural algorithm of artistic style.** *arXiv preprint arXiv:1602.07188*, 2016.

Anh Nguyen, Jason Yosinski, and Jeff Clune.

Deep neural networks are easily fooled: High confidence predictions for unrecognizable images.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 427–436, 2015.

📔 Maurice Peemen, Bart Mesman, and Henk Corporaal.

Speed sign detection and recognition by convolutional neural networks. In Proceedings of the 8th International Automotive Congress, pages 162–170, 2011. Donglai Wei, Bolei Zhou, Antonio Torralba, and William Freeman. mneuron: A matlab plugin to visualize neurons from deep models. http://vision03.csail.mit.edu/cnn_art/. Accessed: 2018-05-10.