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Today

Neural networks?

A generalization of linear regression

to complex models.

Does it work? Usually, no, it doesn’t.

However, this idea now allows us to implement

excellent feature detectors.

As physicians, how can you look at these

methods with a critical eye?
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What can we see on a medical image?



One image : three levels of analysis [EPW11, Man11]

1. Texture 2. Anatomy 3. Function

Each level of analysis can bemodeled

by relying on the previous one.

Let’s discover the most fundamental of all imaging theories:

Texture analysis throughmulti-scale filtering.
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Filtering, aka. “convolution product”

Convolution (i.e. weighted average of the neighboring pixels) :

Cheap generalization of the product “a · x”,
parameterized by the coefficients of a small filter ϕ.

? =

ϕ x ϕ ? x
4
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Multi-scale prior on images

Wavelet theory (1990∼2010 ; Meyer, Mallat, Daubechies...) :

Small filters + cascading zoom-out operations [Mal16]:

Image −→ Relevant coefficients

' “.wav” Audio −→ Music score

=⇒ JPEG2000 format, standard of the movie industry.
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That’s it for classical models.

What about neural networks?



“Supervised learning” = regression

We have:

• A database { (x1 → y1), (x2 → y2), . . . }.

• A model

F ( w ; x ) → y ,

outputparameters input

Let’s find, step by step, a value woptimal of the parameters

that minimizes the average error on the predictions.
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A toy dataset, in dimension 1

7



A toy dataset, in dimension 1

7



A toy dataset, in dimension 1

7



A toy dataset, in dimension 1

7



A toy dataset, in dimension 1

7



A toy dataset, in dimension 1

7



A toy dataset, in dimension 1

7



A toy dataset, in dimension 1

7



A toy dataset, in dimension 1

7



A fundamental example: linear regression
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A slightly more complex model: quadratic regression
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Let’s complexify our model with intermediate variables...
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We can then increase the number of “neurons” and layers!
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Neural networks:

• Generalization of the linear regression to arbitrary models.

• Introduces intermediate variables and bendings.

• Naive training procedure (flexible rod + springs).

Generic neural network

' Interpolation between the samples of the database.

Is it good enough?
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Medical imaging 6= generic Big Data problem

1 number

→ 5 samples

2 numbers

→ 52 samples

128 · 128 numbers

→ 5128·128 samples

The set of all 2D/3D images is way too large

to be sampled with a satisfying accuracy.
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In medical imaging, a good model F(w; x ) ' y should:

Encode a sensible prior on the data

Can I understand a heart MRI as a deformed template?

Put constraints on the decision function,

Thus allowing us to extrapolate outside of the training database.

Rely on cheap, elementary operations,

To scale up to 3D/4D volumes.

=⇒ Let’s combine “regression” with “JPEG2000” !
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Analysis through multi-scale filtering :

=⇒ Convolutional Neural Networks



Towards an optimization of the JPEG2000 filters

Classical signal processing [Dam] :
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Towards an optimization of the JPEG2000 filters

Modern signal processing [PMC11] :
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Convolutional Neural Networks: an excellent compromise

JPEG2000 relies on a model F(w ; x ) ' y that is:

• Computationally cheap.

• Constraining

• Encodes amulti-scale prior on natural images.

By tuning its parameters on a labeled database,

we get a CNN ' problem-dependent “JPEG2020”.

x
CNN

µ(x) m(x) M(x)
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An iconic application: Deep Art [NN16]
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The dreamed application: image classification

Looking at CNN( x ) = [µ(x) , m(x) , M(x) ],

can we separate seagulls from pandas?

What researchers have in mind [WZTF]:
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The limits of multi-scale filtering

CNNs perform feature detection, nothing more, nothing less [NYC15]:

« µ(x) is reliable ;M(x) really isn’t. »

Unfortunately : structured anatomical models are waymore expensive.

(that’s my job... )
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Conclusion



Old ideas, fancy words

As we’ve seen :

Multi-layer perceptron ⇐⇒ Neural network

Regression on a multi-resolution

bank of filters
⇐⇒ Deep learning

?⇐=⇒
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Conclusion

The Deep Learning revolution is all about:

• Artificial intelligence.

• The first convincing model for texture.

• The development of high-level software tools that allow us to

tune the parameters of our models – TensorFlow, PyTorch...

An image processing software always relies on a

simplistic model of the data.

There is no miracle.
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Keep in mind

When facing an “AI” product :

• « Showme what doesn’t work. »

• « Can you explain this error to me? »

• “More data” is not going to solve problems automagically.

Going further :

Cours de Sciences des données au Collège de France,

www.college-de-france.fr/site/stephane-mallat/

Jetez un œil à la leçon inaugurale, très accessible !

23

www.college-de-france.fr/site/stephane-mallat/


Keep in mind

When facing an “AI” product :

• « Showme what doesn’t work. »

• « Can you explain this error to me? »

• “More data” is not going to solve problems automagically.

Going further :

Cours de Sciences des données au Collège de France,

www.college-de-france.fr/site/stephane-mallat/

Jetez un œil à la leçon inaugurale, très accessible !

23

www.college-de-france.fr/site/stephane-mallat/


Keep in mind

When facing an “AI” product :

• « Showme what doesn’t work. »

• « Can you explain this error to me? »

• “More data” is not going to solve problems automagically.

Going further :
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www.college-de-france.fr/site/stephane-mallat/
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AI+Radiology MasterClass

sites.google.com/view/masterclassiaimagerie/home

My notebooks are available: www.math.ens.fr/~feydy/Teaching/
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Thank you for your attention.

Any questions ?
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