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Remember this slide from lecture 1?
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Supervised learning = Regression.
We look for a formula F(x1, … , xD) of the D variables
that best approximates an important quantity (♡).
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First thing you should do?

Working with clients < colleagues < friends.
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Wake up: get out of thematrix!

Data science is never done in a vacuum.
Our (big) spreadsheets are partial projections of a complex reality.

What are we trying to achieve?
What type of information is available?

What do we already know?

To understand this context, you must break the ice with domain experts.

This is a continuous, time-consuming and enjoyable process.
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Today: well-roundedmethods for high-quality features

1. Decision trees – for heterogeneous data

• Greedy training and regularizations.

2. K-Nearest Neighbors – a first isotropic method

• Euclideanmetrics and normalization.

3. Linear regression – to estimate global trends

• Linear, piecewise linear and polynomial regression.

4. Kernel methods – specify a custom prior

• Smoothness, short- and long-range interactions.
• Nadaraya–Watson–Shepard and Ridge regressions. 5



1. Decision trees



Expert knowledge is often distilled as a tree

Transformation of the national breast cancer guideline
into data-driven clinical decision trees, Hendriks et al., 2019
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Treemodels are easy to train with a greedy algorithm
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Dataset One leaf

Best split

Recursive splits that stop if improvements < T ⟺ greedyminimization of
Fitx,y(F) + Reg(F) = 1

2 ∑
i
‖F(xi) − yi‖

2 + T ⋅ #Leaves(F) .
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Two toy regression problems

D=1 – 9 points x on the unit interval [0, 1].
D=2 – 20 points x on the unit square [0, 1]2.

In both cases: scalar output values y.
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Decision trees

Depth 0:
1 constant value.
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Decision trees

Depth 1:
2 distinct values.

The model is piecewise constant.
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Decision trees

Depth 2:
up to 4 distinct values.

The model follows the D axes
of the feature space.
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Decision trees

Depth 3:
up to 8 distinct values.

Wemay choose not to use them all
to limit the complexity of the model.
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Decision trees

Depth 4:
up to 16 distinct values.

Starting to clearly overfit.
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Decision trees

Depth 5:
up to 32 distinct values.
Starting to clearly overfit.
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Decision trees

Depth 10:
up to 1,024 distinct values.

Full overfit on both datasets.
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Decision trees - strengths and weaknesses

Decision trees are:

• Interpretable.
• Easy to train and deploy.
• Fast and CPU-friendly.
• Robust:

• Only use a few columns at a time.
• Work well with heterogenous information.
• Only rely on the ordering of the features.

However, trees also overfit quickly and produce blocky results.
Regularization methods mitigate these issues, at the cost of interpretability.
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1st regularization strategy: boosted sequence of trees
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Iterative fits on the prediction residuals with shallow trees.
Use a small learning rate for better regularization:

Residual i = yi − 0.1 ⋅ ∑
k
Treek(xi) .
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1st regularization strategy: boosted sequence of trees

1 tree of depth 3:
a simple decision tree,

with moderate complexity.
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1st regularization strategy: boosted sequence of trees

3 trees of depth 3:
sum of three simple decision trees,

fitted iteratively on residuals.
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1st regularization strategy: boosted sequence of trees

5 trees of depth 3:
sum of five simple decision trees,
fitted iteratively on residuals.
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1st regularization strategy: boosted sequence of trees

100 trees of depth 3:
sum of a hundred simple decision trees.

We reach a high training accuracy
with a relatively smooth model.
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2nd regularization strategy: random forests
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Parallel fits on bootstrap samples of the original dataset.
The final model is the average of a forest of independent trees.
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2nd regularization strategy: random forests

1 tree of depth 3:
a simple decision tree,

computed on a bootstrap
subset of the original sample.
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2nd regularization strategy: random forests

2 trees of depth 3:
average of two decision trees,
fitted on two independent

bootstrap samples.
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2nd regularization strategy: random forests

5 trees of depth 3:
average of five decision trees,
fitted on five independent

bootstrap samples.
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2nd regularization strategy: random forests

100 trees of depth 3:
a regularized decision rule.

The model still follows the axes
of the feature space, but is smoother.
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Some features may require more work – understand the context! [Wit]

The Body Mass Index = weight / height2

is a good indicator for many health problems.
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Some features may require more work – understand the context!

Applying thresholds on postal codes is mostly useless.
Other statistics may bemuchmore informative.

28



Some features may require more work – understand the context!

Applying thresholds on UNIX timestamps is mostly useless.
Wemust first apply periodic transforms to get hours-days-months.
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Sometimes, the input features are just not good enough [EPW11]

Tree models cannot process raw pixel values.
Standard radiomic features only take you so far.
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Trees and forests – conclusion

Tree-basedmodels are:

• Highly interpretable.
• Well suited to high-quality heterogeneous features.
• Easy to use: XGBoost, LightGBM, scikit-learn…

On the other hand, they produce non-smooth results
and are biased along the axes of the feature space.

This is a major limitation if you work with homogeneous features:
the 3D xyz coordinates, pixel values, audio signals…
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K-Nearest Neighbors



The Euclideanmetric is isotropic

x1

x2

x1 > 1x1 < 1

Thresholding features promotes
decisions along the axes
of the feature space.

x1

x2 x1  + x2 > 42 2

x1  + x2 < 42 2

The squared Euclideanmetric
‖(x1, … , xD)‖2 = x21 + ⋯ + x2D

is invariant to rotations. 32



Average value among the K-Nearest Neighbors

With K = 1 neighbor, we retrieve
a simple nearest neighbor interpolation.

This model is piecewise constant
on the Voronoi diagram of x.
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Average value among the K-Nearest Neighbors

With K = 2 neighbors,
the cells of the diagram

become smaller.
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Average value among the K-Nearest Neighbors

With K = 3 neighbors,
the cells of the diagram

become smaller.
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Average value among the K-Nearest Neighbors

With K = 4 neighbors,
the cells of the diagram

become smaller.
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Average value among the K-Nearest Neighbors

With K = 5 neighbors,
the model looks smoother and smoother

but is still piecewise constant.
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K-Nearest Neighbors: themain selling points

K-NNmodels are:

• Interpretable.

• Isotropic – which may or may not be a good thing!

• Easy to deploy.

• Fast, parallel and GPU-friendly – see our MVA Lecture 7 on algorithms.

• Well-packaged and scalable: FAISS, KeOps, (big-)ann-benchmarks.com…
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Major weakness: K-NNs require a good scaling of the input features

Unlike tree-basedmodels, the Euclidean distance is sensitive
to the precise values of the features x.

Out-of-the-box, K-NNs are not even robust to the choice of the units
for the columns of our dataset!

Wemust normalize the input features using:

• A feature-wise rescaling using e.g. the standard deviation.

• Amultivariate normalization using e.g. Principal Component Analysis.
The Euclidean distance with a normalized PCA is known as theMahalanobismetric.

• Alternatively, a robust equalization of the feature histograms.
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Summary on trees and K-NNs

Tree-based and K-NNmodels are:

• Interpretablemethods with heterogeneous / homogeneous features.

• Well-understood, well-packaged and easy to deploy.

• Excellent baselines for interpolation.

Unfortunately, both methods :

• Produce non-smooth, piecewise constant decision rules.

• Are local and do not estimate global trends.
They are not a natural fit for extrapolation, forecasting.
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Linear regression



A simplemodel: linear regression
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We choose the weights a, b, …, f
byminimizing a least squares error.
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A toy dataset, in dimension 1
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A toy dataset, in dimension 1
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42



A toy dataset, in dimension 1

42



A toy dataset, in dimension 1

42



A toy dataset, in dimension 1

42



A toy dataset, in dimension 1

42



A toy dataset, in dimension 1
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A toy dataset, in dimension 1
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Iterative least squares fitting
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Iterative least squares fitting
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Iterative least squares fitting
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Iterative least squares fitting
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Iterative least squares fitting
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Iterative least squares fitting
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Iterative least squares fitting
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Iterative least squares fitting
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Iterative least squares fitting
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Linear regression

Linear regression models
amonotonic trend.

It cannot handle complex relationships
between the input x and the ouput y.
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What should we do if the problem is complex?

Take a break :-)
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Neural networks



Maybe, we could introduce some intermediate variables in our model?

Domain experts may have suggested a step-by-step process
to compute the quantity of interest – say, the perimeter of an organ.
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Let’s complexify our model with intermediate variables...
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Let’s complexify our model with intermediate variables...
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Let’s complexify our model with intermediate variables... and non-linearities!
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Let’s complexify our model with intermediate variables... and non-linearities!
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We can then increase the number of “neurons”...
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We can then increase the number of “neurons”...
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We can then increase the number of “neurons”... and layers!
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We can then increase the number of “neurons”... and layers!
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We can then increase the number of “neurons”... and layers!
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Fully connected neural networks, aka. multi-layer perceptrons

MLP with 1 hidden neuron.
This is a piecewise linear model

with at most 1 hinge.
The optimizer doesn’t use them all.
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Fully connected neural networks, aka. multi-layer perceptrons

MLP with 10 hidden neurons.
This is a piecewise linear model

with at most 10 hinges.
The optimizer doesn’t use them all.
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Fully connected neural networks, aka. multi-layer perceptrons

MLP with 20 hidden neurons.
This is a piecewise linear model

with at most 20 hinges.
The optimizer doesn’t use them all.
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Fully connected neural networks, aka. multi-layer perceptrons

MLP with 50 hidden neurons.
This is a piecewise linear model

with at most 50 hinges.
The optimizer doesn’t use them all.
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Fully connected neural networks, aka. multi-layer perceptrons

MLP with 100 hidden neurons.
This is a piecewise linear model

with at most 100 hinges.
The optimizer doesn’t use them all.
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Fully connected neural networks, aka. multi-layer perceptrons

Deeper MLP with 2 hidden layers and
100 + 100 hidden neurons,
i.e. at most 100 x 100 hinges.

The non-convex, stochastic optimization is
unreliable and not reproducible.
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Fully connected neural networks, aka. multi-layer perceptrons

Deeper MLP with 3 hidden layers and
100 + 100 + 100 hidden neurons,
i.e. at most 100 x 100 x 100 hinges.

The non-convex, stochastic optimization is
unreliable and not reproducible.
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Fully connected neural networks, aka. multi-layer perceptrons

Deeper MLP with 4 hidden layers and
100 + 100 + 100 + 100 hidden neurons,
i.e. at most 100 x 100 x 100 x 100 hinges.

Starting to look like a smooth origami ;-)
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(Vanilla, fully connected) neural networks – strengths and weaknesses

• Modular and easy to extend.
• Simplest way of implementing high-dimensional piecewise linearmodels.
• Extremelywell-supported on CPU and GPU: PyTorch, TensorFlow…

Unfortunately, the optimization of the “neural” weights
corresponds to a non-convex optimization problem.

Wemust rely on non-deterministic, stochastic solvers.
Performance and smoothness are not simply correlated to

the number of neurons and layers.

In most applications, this lack of reproducibility
and interpretability is a deal-breaker.
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Polynomial interpolation



Polynomial interpolation

Constant polynomials of degree 0:
D=1 – 1 constant.
D=2 – 1 constant.
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Polynomial interpolation

Linear polynomials of degree 1:
D=1 – 1, x.
D=2 – 1, x, y.
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Polynomial interpolation

Quadratic polynomials of degree 2:
D=1 – 1, x, x2.

D=2 – 1, x, y, x2, xy, y2.
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Polynomial interpolation

Cubic polynomials of degree 3:
D=1 – 1, x, x2, x3.

D=2 – 1, x, y, x2, xy, y2, x3, x2y, xy2, y3.
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Polynomial interpolation

Quartic polynomials of degree 4:
D=1 – 1, x, x2, x3, x4.

D=2 – 1, x, y, x2, xy, y2, x3, x2y, xy2, y3,
x4, x3y, x2y2, xy3, y4.

Starting to overfit in dimension D=2.
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Polynomial interpolation

Polynomials of degree 5:
D=1 – 1, x, x2, x3, x4, x5.

D=2 – 1, x, y, x2, xy, y2, x3, x2y, xy2, y3,
x4, x3y, …, y4, x5, x4y, …, y5.

Full overfit in dimension D=2.
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Polynomial interpolation

Polynomials of degree 10:
D=1 – 1, x, x2, x3, x4, x5, …, x10.

D=2 – 1, x, y, x2, xy, y2, x3, x2y, xy2, y3,
x4, x3y, …, y4, x5, x4y, …, y5, …, y10.

Full overfit in both examples.
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Summary of themodels that we have seen so far

“Non-parametric” methods:

• Tree-basedmodels – robust, but with a bias along the axes.
• K-Nearest Neighborsmodels – isotropic, but requires a good scaling.

“Parametric” methods:

• Linear regression – useful, but often too simplistic.
• Neural networks – expressive, but unreliable.

Polynomial regression:

• Linear regression with polynomial features.
• Quadratic regression is fine – but we badly overfit beyond degree 4-5.

67



Kernel interpolation



User-specified smoothness

Let’s specify directly a linear parametric form for the model:

F(a1, … , aJ; x) = a1F1(x) + ⋯ + aJFJ(x).

In practice, we often use:

F(aj; x) = ∑
j
aj k(x − xj)

and say that k(x − y) is the kernel of our method.
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Some common kernels

Exponential Gaussian Cauchy

Twomain criteria: is the kernel smooth or peaky?
Does the kernel have compact support or a heavy tail?
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How dowe choose the weights?

First method – just use a fraction instead of a linear combination:

F(x) =
∑

j
k(x − xj) yj

∑
j
k(x − xj)

The Nadaraya–Watsonmethod assumes that k(x − y) takes positive values.

It corresponds to a barycentric interpolation between the values yj,
with weights that are proportional to k(x − xj).
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Nadaraya–Watson interpolation

Smooth, local Gaussian kernel with σ = 0.2
k(x, y) = exp(−‖x − y‖2/2σ2).

Smooth local averaging
on the unit interval and square.
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Nadaraya–Watson interpolation

Smooth, local Gaussian kernel with σ = 0.1
k(x, y) = exp(−‖x − y‖2/2σ2).

Sharper, K-NN-like decision boundaries.
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Nadaraya–Watson interpolation

Heavy-tail Cauchy kernel with σ = 0.1
k(x, y) = 1 / (1 + ‖x − y‖2/σ2).

Dampened towards the global average.
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Nadaraya–Watson interpolation

Pointy exponential kernel with σ = 0.1
k(x, y) = exp(−‖x − y‖/σ).

Closer fit to the training data.

74



Nadaraya–Watson–Shepard interpolation – Inverse Distance Weighting

Singular Shepard kernel
k(x, y) = 1 / ‖x − y‖.

Perfect fit to the training data.

75



Nadaraya–Watson–Shepard interpolation – Inverse Distance Weighting

Singular and heavy-tail Shepard kernel
k(x, y) = 1 / √‖x − y‖.

Perfect fit to the training data,
dampening to the average value elsewhere.
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Nadaraya–Watson–Shepard interpolation – Inverse Distance Weighting

Highly singular Shepard kernel
k(x, y) = 1 / ‖x − y‖2.

Perfect fit to the training data,
close to a linear interpolation.
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Nadaraya–Watson–Shepard interpolation – Inverse Distance Weighting

Very highly singular Shepard kernel
k(x, y) = 1 / ‖x − y‖4.

Perfect fit to the training data,
close to a nearest neighbor interpolation.
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Secondmethod: solve a linear system

F(x1) = a1 𝜑(x1 − x1) + ⋯ + aN 𝜑(x1 − xN) ≃ y1

F(x2) = a1 𝜑(x2 − x1) + ⋯ + aN 𝜑(x2 − xN) ≃ y2

⋮ = ⋮ + ⋱ + ⋮ ≃ ⋮

F(xN) = a1 𝜑(xN − x1) + ⋯ + aN 𝜑(xN − xN) ≃ yN

Linear system Φ a = y
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Approximate kernel regression

Enforcing a perfect fit to the data may not be reasonable.

Instead, we target a trade-off between accuracy and smoothness:

min
a

‖Φa − y‖2 + Reg(a).

Popular regularization terms are convex:

• Ridge: 𝛼‖a‖2 = 𝛼(a21 + ⋯ + a2N).

• Lasso: 𝜆‖a‖1 = 𝜆(|a1| + ⋯ + |aN|).

• Elastic Net: 𝜆‖a‖1 + 𝛼‖a‖2.
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Kernel ridge regression

min
a

‖Φ a − y‖2 + 𝛼 ‖a‖2 = (a⊺Φ⊺ − y⊺)(Φa − y) + 𝛼 a⊺a

= a⊺(Φ⊺Φ + 𝛼 IdN) a − 2 y⊺Φa + y⊺y

⟹ a = (Φ⊺Φ + 𝛼 IdN)−1 Φ⊺y

= Φ⊺(ΦΦ⊺ + 𝛼 IdN)−1y

⟹ F(x) = Φ a = ΦΦ⊺(ΦΦ⊺ + 𝛼 IdN)−1 y .

A fundamental object appears:
the symmetric, positive, semidefinite kernel matrix K = ΦΦ⊺.
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The kernel trick

K = ΦΦ⊺ i.e. K(xi, xj) = ⟨ Φ(xi), Φ(xj) ⟩ =
N

∑
s=1

𝜑(xi − xs) 𝜑(xj − xs)

This may be expensive: N terms for every coefficient of K.

Fortunately, wemay use the continuous limit instead:

k(xi, xj) = ∫
x
𝜑(xi − x) 𝜑(xj − x) dx

This dot product between two translated copies of 𝜑 is often known in closed form.
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Computational perspective

We consider functions k(xi − xj) that can be written
as the previous integral for a suitable function 𝜑.

Criterion: if the Fourier transform ̂k(𝜔) is real-valued and positive,

then 𝜑(𝜔) = √ ̂k(𝜔) works.

Then, kernel ridge regression simply relies on the model:
F(x) = K (K + 𝛼 IdN)−1 y.

On GPUs, wemay solve this linear system efficiently using:

• KeOps – bruteforce methods scale to N = 1,000,000 in seconds.
• FalkonML – approximate methods scale to N = 1,000,000,000 in hours.
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Kriging, Gaussian process regression [Lec18]

Kernel ridge regression has a rich history in applied mathematics.
It is especially popular in geostatistics to estimate smooth terrain models:

the approximation parameter α controls the nugget effect.

This theory is also behind Sobolev norms and Gaussian processes…
More about this in the MVA Lecture 6 on probability distributions!
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Kernel ridge regression – with α = 0.1

Smooth, global Gaussian kernel with σ = 1.0
k(x, y) = exp(−‖x − y‖2/2σ2).

Only models a global linear trend.
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Kernel ridge regression – with α = 0.1

Smooth Gaussian kernel with σ = 0.5
k(x, y) = exp(−‖x − y‖2/2σ2).

Starts to discern different regions.
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Kernel ridge regression – with α = 0.1

Smooth Gaussian kernel with σ = 0.2
k(x, y) = exp(−‖x − y‖2/2σ2).

Well-suited to the sampling density.
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Kernel ridge regression – with α = 0.1

Smooth, local Gaussian kernel with σ = 0.1
k(x, y) = exp(−‖x − y‖2/2σ2).

Overfits on individual sample values.
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Kernel ridge regression – with α = 0.1

Heavy-tail Cauchy kernel with σ = 0.2
k(x, y) = 1 / (1 + ‖x − y‖2/σ2).

Extrapolateswith more confidence.
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Kernel ridge regression – with α = 0.1

Pointy exponential kernel with σ = 0.2
k(x, y) = exp(−‖x − y‖/σ).

Closer fit to the training data.
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Kernel ridge regression – with α = 0.1

Pointy, global distance kernel
k(x, y) = −‖x − y‖.

Models both local and global trends.
Excellent parameter-free baseline.
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Conclusion



Numerous regressionmodels… But what about the curse of dimensionality?

Decision tree. Random forest. Nearest neighbors. Neural network.

Linear. Cubic. Shepard. Kernel. 92
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